Show simple item record

Quantification of three- dimensional morphology of craniofacial mineralized tissue defects in Tgfbr2/Osx- Cre mice

dc.contributor.authorSnider, Taylor Nicholas
dc.contributor.authorLouie, Ke’ale W.
dc.contributor.authorZuzo, Gabrielle
dc.contributor.authorOliveira Ruellas, Antonio Carlos
dc.contributor.authorSolem, Richard Christian
dc.contributor.authorCevidanes, Lucia H. S.
dc.contributor.authorZhang, Honghao
dc.contributor.authorMishina, Yuji
dc.date.accessioned2021-10-05T15:04:56Z
dc.date.available2022-10-05 11:04:54en
dc.date.available2021-10-05T15:04:56Z
dc.date.issued2021-09
dc.identifier.citationSnider, Taylor Nicholas; Louie, Ke’ale W. ; Zuzo, Gabrielle; Oliveira Ruellas, Antonio Carlos; Solem, Richard Christian; Cevidanes, Lucia H. S.; Zhang, Honghao; Mishina, Yuji (2021). "Quantification of three- dimensional morphology of craniofacial mineralized tissue defects in Tgfbr2/Osx- Cre mice." Oral Science International 18(3): 193-202.
dc.identifier.issn1348-8643
dc.identifier.issn1881-4204
dc.identifier.urihttps://hdl.handle.net/2027.42/170199
dc.description.abstractCraniofacial morphology is affected by the growth, development, and three- dimensional (3D) relationship of mineralized structures including the skull, jaws, and teeth. Despite fulfilling different purposes within this region, cranial bones and tooth dentin are derived from mesenchymal cells that are affected by perturbations within the TGF- β signaling pathway. TGFBR2 encodes a transmembrane receptor that is part of the canonical, SMAD- dependent TGF- β signaling pathway and mutations within this gene are associated with Loeys- Dietz syndrome, a condition which often presents with craniofacial signs including craniosynostosis and cleft palate. To investigate the role of Tgfbr2 in immature, but committed, mineralized tissue forming cells, we analyzed postnatal craniofacial morphology in mice with conditional Tgfbr2 deletion in Osx- expressing cells. Novel application of a 3D shape- based comparative technique revealed that Tgfbr2 in Osx- expressing cells results in impaired postnatal molar root and anterior cranial growth. These findings support those from studies using similar Tgfbr2 conditional knockout models, highlight the anomalous facial and dental regions/structures using tomographic imaging- based techniques, and provide insight into the role of Tgfbr2 during postnatal craniofacial development.
dc.publisherWiley Periodicals, Inc.
dc.subject.othertissue engineering
dc.subject.other3D modeling
dc.subject.othermorphometry
dc.subject.otherTgfbr2
dc.titleQuantification of three- dimensional morphology of craniofacial mineralized tissue defects in Tgfbr2/Osx- Cre mice
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170199/1/osi21099_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170199/2/osi21099.pdf
dc.identifier.doi10.1002/osi2.1099
dc.identifier.sourceOral Science International
dc.identifier.citedreferenceRodda SJ, McMahon AP. Distinct roles for Hedgehog and caronical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 2006; 133: 3231 - 44.
dc.identifier.citedreferenceWen J, Liu S, Ye X, Xie X, Li J, Li H, et al. Comparative study of cephalometric measurements using 3 imaging modalities. J Am Dent Assoc. 2017; 148: 913 - 21.
dc.identifier.citedreferenceKumar V, Ludlow JB, Mol A, Cevidanes L. Comparison of conventional and cone beam CT synthesized cephalograms. Dentomaxillofacial Radiol. 2007; 36: 263 - 9.
dc.identifier.citedreferenceLoeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005; 37: 275 - 81.
dc.identifier.citedreferenceJani P, Nguyen QC, Almpani K, Keyvanfar C, Mishra R, Liberton D, et al. Severity of oro- dental anomalies in Loeys- Dietz syndrome segregates by gene mutation. J Med Genet. 2020; 57 ( 10 ): 699 - 707.
dc.identifier.citedreferenceMassagué J. TGF- β SIGNAL TRANSDUCTION. Annu Rev Biochem. 1998; 67: 753 - 91.
dc.identifier.citedreferenceIto Y, Yeo JY, Chytil A, Han J, Bringas P, Nakajima A, et al. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development. 2003; 130: 5269 - 80.
dc.identifier.citedreferenceOka K, Oka S, Hosokawa R, Bringas P Jr, Brockhoff HC II, Nonaka K, et al. TGF- β mediated Dlx5 signaling plays a crucial role in osteo- chondroprogenitor cell lineage determination during mandible development. Dev Biol. 2008; 321: 303 - 9.
dc.identifier.citedreferenceOka S, Oka K, Xu X, Sasaki T, Bringas P Jr, Chai Y. Cell autonomous requirement for TGF- β signaling during odontoblast differentiation and dentin matrix formation. Mech Dev. 2007; 124: 409 - 15.
dc.identifier.citedreferenceSeo H- S, Serra R. Tgfbr2 is required for development of the skull vault. Dev Biol. 2009; 334: 481 - 90.
dc.identifier.citedreferenceNakamura T, Colbert MC, Robbins J. Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system. Circ Res. 2006; 98: 1547 - 54.
dc.identifier.citedreferenceWang Y, Cox MK, Coricor G, MacDougall M, Serra R. Inactivation of Tgfbr2 in Osterix- Cre expressing Dental Mesenchyme Disrupts Molar Root Formation. Dev Biol. 2013; 382: 27 - 37.
dc.identifier.citedreferenceNakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The Novel Zinc Finger- Containing Transcription Factor Osterix Is Required for Osteoblast Differentiation and Bone Formation. Cell. 2002; 108: 17 - 29.
dc.identifier.citedreferenceChoi H, Ahn Y- H, Kim T- H, Bae C- H, Lee J- C, You H- K, et al. TGF- β Signaling Regulates Cementum Formation through Osterix Expression. Sci Rep. 2016; 6: 1 - 11.
dc.identifier.citedreferencePeters SB, Wang Y, Serra R. Tgfbr2 is required in osterix expressing cells for postnatal skeletal development. Bone. 2017; 97: 54 - 64.
dc.identifier.citedreferenceTwigg SRF, Wilkie AOM. A Genetic- Pathophysiological Framework for Craniosynostosis. Am J Hum Genet. 2015; 97: 359 - 77.
dc.identifier.citedreferenceOpperman LA, Adab K, Gakunga PT. Transforming growth factor- β2 and TGF- β3 regulate fetal rat cranial suture morphogenesis by regulating rates of cell proliferation and apoptosis. Dev Dyn. 2000; 219: 237 - 47.
dc.identifier.citedreferenceSanford LP, Ormsby I, Gittenberger- de Groot AC, Sariola H, Friedman R, Boivin GP, et al. TGF- beta 2 knockout mice have multiple developmental defects that are non- overlapping with other TGF- beta knockout phenotypes. Development. 1997; 124: 2659 - 70.
dc.identifier.citedreferenceWang Y, Sizeland A, Wang X, Sassoon D. Restricted expression of type- II TGFP receptor in murine embryonic development suggests a central role in tissue modeling and CNS patterning. Mech Dev. 1995; 52: 275 - 89.
dc.identifier.citedreferenceThesleff I, Nieminen P. Tooth morphogenesis and cell differentiation. Curr Opin Cell Biol. 1996; 8: 844 - 50.
dc.identifier.citedreferenceLungová V, Radlanski RJ, Tucker AS, Renz H, Míšek I, Matalová E. Tooth- bone morphogenesis during postnatal stages of mouse first molar development. J Anat. 2011; 218: 699 - 716.
dc.identifier.citedreferenceWei X, Thomas N, Hatch NE, Hu M, Liu F. Postnatal craniofacial skeletal development of female C57BL/6NCrl mice. Front Physiol. 2017; 8: 1 - 18.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.