Show simple item record

Disturbance- accelerated succession increases the production of a temperate forest

dc.contributor.authorGough, Christopher M.
dc.contributor.authorBohrer, Gil
dc.contributor.authorHardiman, Brady S.
dc.contributor.authorNave, Lucas E.
dc.contributor.authorVogel, Christoph S.
dc.contributor.authorAtkins, Jeff W.
dc.contributor.authorBond‐lamberty, Ben
dc.contributor.authorFahey, Robert T.
dc.contributor.authorFotis, Alexander T.
dc.contributor.authorGrigri, Maxim S.
dc.contributor.authorHaber, Lisa T.
dc.contributor.authorJu, Yang
dc.contributor.authorKleinke, Callie L.
dc.contributor.authorMathes, Kayla C.
dc.contributor.authorNadelhoffer, Knute J.
dc.contributor.authorStuart‐haëntjens, Ellen
dc.contributor.authorCurtis, Peter S.
dc.date.accessioned2021-10-05T15:05:27Z
dc.date.available2022-11-05 11:05:24en
dc.date.available2021-10-05T15:05:27Z
dc.date.issued2021-10
dc.identifier.citationGough, Christopher M.; Bohrer, Gil; Hardiman, Brady S.; Nave, Lucas E.; Vogel, Christoph S.; Atkins, Jeff W.; Bond‐lamberty, Ben ; Fahey, Robert T.; Fotis, Alexander T.; Grigri, Maxim S.; Haber, Lisa T.; Ju, Yang; Kleinke, Callie L.; Mathes, Kayla C.; Nadelhoffer, Knute J.; Stuart‐haëntjens, Ellen ; Curtis, Peter S. (2021). "Disturbance- accelerated succession increases the production of a temperate forest." Ecological Applications (7): n/a-n/a.
dc.identifier.issn1051-0761
dc.identifier.issn1939-5582
dc.identifier.urihttps://hdl.handle.net/2027.42/170208
dc.description.abstractMany secondary deciduous forests of eastern North America are approaching a transition in which mature early- successional trees are declining, resulting in an uncertain future for this century- long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling- induced mortality of >6,700 early- successional Populus spp. (aspen) and Betula papyrifera (paper birch). Meteorological flux tower- based C cycling observations from the 33- ha treatment forest have been paired with those from a nearby unmanipulated forest since 2008. Following over a decade of observations, we revisit our core hypothesis: that net ecosystem production (NEP) would increase following the transition to mid- late- successional species dominance due to increased canopy structural complexity. Supporting our hypothesis, NEP was stable, briefly declined, and then increased relative to the control in the decade following disturbance; however, increasing NEP was not associated with rising structural complexity but rather with a rapid 1- yr recovery of total leaf area index as mid- late- successional Acer, Quercus, and Pinus assumed canopy dominance. The transition to mid- late- successional species dominance improved carbon- use efficiency (CUE = NEP/gross primary production) as ecosystem respiration declined. Similar soil respiration rates in control and treatment forests, along with species differences in leaf physiology and the rising relative growth rates of mid- late- successional species in the treatment forest, suggest changes in aboveground plant respiration and growth were primarily responsible for increases in NEP. We conclude that deciduous forests transitioning from early to middle succession are capable of sustained or increased NEP, even when experiencing extensive tree mortality. This adds to mounting evidence that aging deciduous forests in the region will function as C sinks for decades to come.
dc.publisherAnnual Reviews
dc.publisherWiley Periodicals, Inc.
dc.subject.otherforests
dc.subject.otherAmeriFlux
dc.subject.othercarbon
dc.subject.otherdisturbance
dc.subject.otherleaf area index
dc.subject.otherproduction
dc.subject.otherresistance
dc.subject.otherstability
dc.subject.otherstructural complexity
dc.subject.othersuccession
dc.titleDisturbance- accelerated succession increases the production of a temperate forest
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170208/1/eap2417_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170208/2/eap2417-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170208/3/eap2417.pdf
dc.identifier.doi10.1002/eap.2417
dc.identifier.sourceEcological Applications
dc.identifier.citedreferenceMorin, T. H., G. Bohrer, R. P. M. Frasson, L. Naor- Azrieli, S. Mesi, K. Stefanik, and K. V. R. Schäfer. 2014a. Environmental drivers of methane fluxes from an urban temperate wetland park. Journal of Geophysical Research: Biogeosciences 119: 2188 - 2208.
dc.identifier.citedreferenceLasslop, G., M. Reichstein, D. Papale, A. D. Richardson, A. Arneth, A. Barr, P. Stoy, and G. Wohlfahrt. 2010. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology 16: 187 - 208.
dc.identifier.citedreferenceLovett, G. M., C. D. Canham, M. A. Arthur, K. C. Weathers, and R. D. Fitzhugh. 2006. Forest ecosystem responses to exotic pests and pathogens in eastern North America. BioScience 56: 395 - 405.
dc.identifier.citedreferenceLu, H. C., G. M. J. Mohren, J. den Ouden, V. Goudiaby, and F. J. Sterck. 2016. Overyielding of temperate mixed forests occurs in evergreen- deciduous but not in deciduous- deciduous species mixtures over time in the Netherlands. Forest Ecology and Management 376: 321 - 332.
dc.identifier.citedreferenceLuyssaert, S., E. D. Schulze, A. Borner, A. Knohl, D. Hessenmoller, B. E. Law, P. Ciais, and J. Grace. 2008. Old- growth forests as global carbon sinks. Nature 455: 213 - 215.
dc.identifier.citedreferenceMatheny, A. M., et al. 2014. Species- specific transpiration responses to intermediate disturbance in a northern hardwood forest. Journal of Geophysical Research: Biogeosciences 119: 2292 - 2311.
dc.identifier.citedreferenceMatheny, A. M., R. P. Fiorella, G. Bohrer, C. J. Poulsen, T. H. Morin, A. Wunderlich, C. S. Vogel, and P. S. Curtis. 2017. Contrasting strategies of hydraulic control in two codominant temperate tree species. Ecohydrology 10: e1815.
dc.identifier.citedreferenceMatsushita, K., M. Tomotsune, Y. Sakamaki, and H. Koizumi. 2015. Effects of management treatments on the carbon cycle of a cool- temperate broad- leaved deciduous forest and its potential as a bioenergy source. Ecological Research 30: 293 - 302.
dc.identifier.citedreferenceMorin, T. H., G. Bohrer, L. Naor- Azrieli, S. Mesi, W. T. Kenny, W. J. Mitsch, and K. V. R. Schäfer. 2014b. The seasonal and diurnal dynamics of methane flux at a created urban wetland. Ecological Engineering 72: 74 - 83.
dc.identifier.citedreferenceMosier, S. L., E. S. Kane, D. L. Richter, E. A. Lilleskov, M. F. Jurgensen, A. J. Burton, and S. C. Resh. 2017. Interactive effects of climate change and fungal communities on wood- derived carbon in forest soils. Soil Biology and Biochemistry 115: 297 - 309.
dc.identifier.citedreferenceNave, L. E., et al. 2011a. Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest. Journal of Geophysical Research- Biogeosciences 116: G04016.
dc.identifier.citedreferenceNave, L. E., C. M. Gough, C. H. Perry, K. L. Hofmeister, J. M. Le Moine, G. M. Domke, C. W. Swanston, and K. J. Nadelhoffer. 2017. Physiographic factors underlie rates of biomass production during succession in great lakes forest landscapes. Forest Ecology and Management 397: 157 - 173.
dc.identifier.citedreferenceNave, L. E., J. P. Sparks, J. Le Moine, B. S. Hardiman, K. J. Nadelhoffer, J. M. Tallant, C. S. Vogel, B. D. Strahm, and P. S. Curtis. 2014. Changes in soil nitrogen cycling in a northern temperate forest ecosystem during succession. Biogeochemistry 121: 471 - 488.
dc.identifier.citedreferenceNilsen, E. B., D. E. Bowler, and J. D. C. Linnell. 2020. Exploratory and confirmatory research in the open science era. Journal of Applied Ecology 57: 842 - 847.
dc.identifier.citedreferenceOdum, E. P. 1969. Strategy of ecosystem development. Science 164: 262 - 270.
dc.identifier.citedreferencePan, Y., et al. 2011a. A large and persistent carbon sink in the world’s forests. Science 333: 988 - 993.
dc.identifier.citedreferencePan, Y., J. M. Chen, R. Birdsey, K. McCullough, L. He, and F. Deng. 2011b. Age structure and disturbance legacy of North American forests. Biogeosciences 8: 715 - 732.
dc.identifier.citedreferenceParker, G. G., D. J. Harding, and M. L. Berger. 2004. A portable lidar system for rapid determination of forest canopy structure. Journal of Applied Ecology 41: 755 - 767.
dc.identifier.citedreferencePastorello, G., et al. 2020. The fluxnet2015 dataset and the oneflux processing pipeline for eddy covariance data. Scientific Data 7: 225.
dc.identifier.citedreferenceRastetter, E. B., G. W. Kling, G. R. Shaver, B. C. Crump, L. Gough, and K. L. Griffin. 2021. Ecosystem recovery from disturbance is constrained by N cycle openness, vegetation- soil N distribution, form of N losses, and the balance between vegetation and soil- microbial processes. Ecosystems 24: 667 - 685.
dc.identifier.citedreferenceRebmann, C., O. Kolle, B. Heinesch, R. Queck, A. Ibrom, and M. Aubinet. 2012. Data aquisition and flux calculation. Pages 59 - 83 in M. Aubinet, T. Vesala, and D. Papale, editors. Eddy covariance, a practical guide to measurement and data analysis. Springer Netherlands, New York, New York, USA.
dc.identifier.citedreferenceReichstein, M., et al. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology 11: 1424 - 1439.
dc.identifier.citedreferenceRichardson, A. D., et al. 2006. A multi- site analysis of random error in tower- based measurements of carbon and energy fluxes. Agricultural and Forest Meteorology 136: 1 - 18.
dc.identifier.citedreferenceSagara, B. T., R. T. Fahey, C. S. Vogel, A. T. Fotis, P. S. Curtis, and C. M. Gough. 2018. Moderate disturbance has similar effects on production regardless of site quality and composition. Forests 9: 70.
dc.identifier.citedreferenceScheuermann, C. M., L. E. Nave, R. T. Fahey, K. J. Nadelhoffer, and C. M. Gough. 2018. Effects of canopy structure and species diversity on primary production in Upper Great Lakes forests. Oecologia 188: 405 - 415.
dc.identifier.citedreferenceSchmid, A. V., C. S. Vogel, E. Liebman, P. S. Curtis, and C. M. Gough. 2016. Coarse woody debris and the carbon balance of a moderately disturbed forest. Forest Ecology and Management 361: 38 - 45.
dc.identifier.citedreferenceSchmid, H. P., H.- B. Su, C. S. Vogel, and P. S. Curtis. 2003. Ecosystem- atmosphere exchange of carbon dioxide over a mixed hardwood forest in northern lower Michigan. Journal of Geophysical Research 108: 4417.
dc.identifier.citedreferenceSeidl, R., W. Rammer, and T. A. Spies. 2014. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecological Applications 24: 2063 - 2077.
dc.identifier.citedreferenceSeidl, R., T. A. Spies, D. L. Peterson, S. L. Stephens, and J. A. Hicke. 2016. Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. Journal of Applied Ecology 53: 120 - 129.
dc.identifier.citedreferenceStuart- Haentjens, E. J., P. S. Curtis, R. T. Fahey, C. S. Vogel, and C. M. Gough. 2015. Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity. Ecology 96: 2478 - 2487.
dc.identifier.citedreferenceStueve, K. M., C. H. Perry, M. D. Nelson, S. P. Healey, A. D. Hill, G. G. Moisen, W. B. Cohen, D. D. Gormanson, and C. Q. Huang. 2011. Ecological importance of intermediate windstorms rivals large, infrequent disturbances in the northern great lakes. Ecosphere 2: art2.
dc.identifier.citedreferenceTamrakar, R., M. B. Rayment, F. Moyano, M. Mund, and A. Knohl. 2018. Implications of structural diversity for seasonal and annual carbon dioxide fluxes in two temperate deciduous forests. Agricultural and Forest Meteorology 263: 465 - 476.
dc.identifier.citedreferenceTang, X. G., H. P. Li, M. G. Ma, L. Yao, M. Peichl, A. Arain, X. B. Xu, and M. Goulden. 2017. How do disturbances and climate effects on carbon and water fluxes differ between multi- aged and even- aged coniferous forests? Science of the Total Environment 599: 1583 - 1597.
dc.identifier.citedreferenceTownsend, P. A., A. Singh, J. R. Foster, N. J. Rehberg, C. C. Kingdon, K. N. Eshleman, and S. W. Seagle. 2012. A general landsat model to predict canopy defoliation in broadleaf deciduous forests. Remote Sensing of Environment 119: 255 - 265.
dc.identifier.citedreferenceTurner, M. G. 2010. Disturbance and landscape dynamics in a changing world. Ecology 91: 2833 - 2849.
dc.identifier.citedreferenceUrbanski, S., C. Barford, S. Wofsy, C. Kucharik, E. Pyle, J. Budney, K. McKain, D. Fitzjarrald, M. Czikowsky, and J. W. Munger. 2007. Factors controlling CO2 exchange on timescales from hourly to decadal at harvard forest. Journal of Geophysical Research: Biogeosciences 112: G02020.
dc.identifier.citedreferenceVan Pelt, R., S. C. Sillett, W. A. Kruse, J. A. Freund, and R. D. Kramer. 2016. Emergent crowns and light- use complementarity lead to global maximum biomass and leaf area in Sequoia sempervirens forests. Forest Ecology and Management 375: 279 - 308.
dc.identifier.citedreferenceVogel, C. S., and P. S. Curtis. 1995. Leaf gas- exchange and nitrogen dynamics of n- 2- fixing field- grown Alnus glutinosa under elevated atmospheric CO2. Global Change Biology 1: 55 - 61.
dc.identifier.citedreferenceWales, S. B., M. R. Kreider, J. Atkins, C. M. Hulshof, R. T. Fahey, L. E. Nave, K. J. Nadelhoffer, and C. M. Gough. 2020. Stand age, disturbance history and the temporal stability of forest production. Forest Ecology and Management 460: 117865.
dc.identifier.citedreferenceWhittaker, R. H. 1956. Vegetation of the Great Smoky Mountains. Ecological Monographs 26: 1 - 69.
dc.identifier.citedreferenceWilliams, C. A., G. J. Collatz, J. Masek, C. Q. Huang, and S. N. Goward. 2014. Impacts of disturbance history on forest carbon stocks and fluxes: Merging satellite disturbance mapping with forest inventory data in a carbon cycle model framework. Remote Sensing of Environment 151: 57 - 71.
dc.identifier.citedreferenceWilliams, C. A., H. Gu, R. MacLean, J. G. Masek, and G. J. Collatz. 2016. Disturbance and the carbon balance of us forests: A quantitative review of impacts from harvests, fires, insects, and droughts. Global and Planetary Change 143: 66 - 80.
dc.identifier.citedreferenceWolter, P. T., and M. A. White. 2002. Recent forest cover type transitions and landscape structural changes in northeast Minnesota, USA. Landscape Ecology 17: 133 - 155.
dc.identifier.citedreferenceAbrams, M. D., and M. L. Scott. 1989. Disturbance- mediated accelerated succession in 2 Michigan forest types. Forest Science 35: 42 - 49.
dc.identifier.citedreferenceHardiman, B. S., G. Bohrer, C. M. Gough, and P. S. Curtis. 2013a. Canopy structural changes following widespread mortality of canopy dominant trees. Forests 4: 537 - 552.
dc.identifier.citedreferenceAllen, M. S., V. Thapa, J. R. Arevalo, and M. W. Palmer. 2012. Windstorm damage and forest recovery: Accelerated succession, stand structure, and spatial pattern over 25 years in two Minnesota forests. Plant Ecology 213: 1833 - 1842.
dc.identifier.citedreferenceAmiro, B. D., et al. 2010. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. Journal of Geophysical Research: Biogeosciences 115: G00K02.
dc.identifier.citedreferenceAnderegg, W. R. L., et al. 2016. When a tree dies in the forest: Scaling climate- driven tree mortality to ecosystem water and carbon fluxes. Ecosystems 19: 1133 - 1147.
dc.identifier.citedreferenceAtkins, J. W., et al. 2020. Application of multidimensional structural characterization to detect and describe moderate forest disturbance. Ecosphere 11: e03156.
dc.identifier.citedreferenceAtkins, J. W., G. Bohrer, R. T. Fahey, B. S. Hardiman, T. H. Morin, A. E. L. Stovall, N. Zimmerman, and C. M. Gough. 2018a. Quantifying vegetation and canopy structural complexity from terrestrial lidar data using the forestr R package. Methods in Ecology and Evolution 9: 2057 - 2066.
dc.identifier.citedreferenceAtkins, J. W., R. T. Fahey, B. H. Hardiman, and C. M. Gough. 2018b. Forest canopy structural complexity and light absorption relationships at the subcontinental scale. Journal of Geophysical Research: Biogeosciences 123: 1387 - 1405.
dc.identifier.citedreferenceBattles, J. J., N. L. Cleavitt, D. S. Saah, B. T. Poling, and T. J. Fahey. 2017. Ecological impact of a microburst windstorm in a northern hardwood forest. Canadian Journal of Forest Research 47: 1695 - 1701.
dc.identifier.citedreferenceBauhus, J., K. Puettmann, and C. Messier. 2009. Silviculture for old- growth attributes. Forest Ecology and Management 258: 525 - 537.
dc.identifier.citedreferenceBeamesderfer, E. R., M. A. Arain, M. Khomik, and J. J. Brodeur. 2020a. The impact of seasonal and annual climate variations on the carbon uptake capacity of a deciduous forest within the great lakes region of Canada. Journal of Geophysical Research: Biogeosciences 125: e2019JG005389.
dc.identifier.citedreferenceBeamesderfer, E. R., M. A. Arain, M. Khomik, J. J. Brodeur, and B. M. Burns. 2020b. Response of carbon and water fluxes to meteorological and phenological variability in two eastern North American forests of similar age but contrasting species composition- a multiyear comparison. Biogeosciences 17: 3563 - 3587.
dc.identifier.citedreferenceBesnard, S., et al. 2018. Quantifying the effect of forest age in annual net forest carbon balance. Environmental Research Letters 13: 124018.
dc.identifier.citedreferenceBirdsey, R. A., K. Pregitzer, and A. Lucier. 2006. Forest carbon management in the United States: 1600- 2100. Journal of Environmental Quality 35: 1461 - 1469.
dc.identifier.citedreferenceBose, A. K., A. Weiskittel, and R. G. Wagner. 2017. A three decade assessment of climate- associated changes in forest composition across the north- eastern USA. Journal of Applied Ecology 54: 1592 - 1604.
dc.identifier.citedreferenceBovard, B. D., P. S. Curtis, C. S. Vogel, H. B. Su, and H. P. Schmid. 2005. Environmental controls on sap flow in a northern hardwood forest. Tree Physiology 25: 31 - 38.
dc.identifier.citedreferenceBrzostek, E. R., D. Dragoni, H. P. Schmid, A. F. Rahman, D. Sims, C. A. Wayson, D. J. Johnson, and R. P. Phillips. 2014. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Global Change Biology 20: 2531 - 2539.
dc.identifier.citedreferenceBuma, B. 2015. Disturbance interactions: characterization, prediction, and the potential for cascading effects. Ecosphere 6: 70.
dc.identifier.citedreferenceCampbell, J., G. Alberti, J. Martin, and B. E. Law. 2009. Carbon dynamics of a ponderosa pine plantation following a thinning treatment in the northern Sierra Nevada. Forest Ecology and Management 257: 453 - 463.
dc.identifier.citedreferenceChang, C. C., et al. 2019. Testing conceptual models of early plant succession across a disturbance gradient. Journal of Ecology 107: 517 - 530.
dc.identifier.citedreferenceClark, K. L., H. J. Renninger, N. Skowronski, M. Gallagher, and K. V. R. Schafer. 2018. Decadal- scale reduction in forest net ecosystem production following insect defoliation contrasts with short- term impacts of prescribed fires. Forests 9: 145.
dc.identifier.citedreferenceCoates, K. D., and P. J. Burton. 1997. A gap- based approach for development of silvicultural systems to address ecosystem management objectives. Forest Ecology and Management 99: 337 - 354.
dc.identifier.citedreferenceCohen, W. B., Z. Yang, S. V. Stehman, T. A. Schroeder, D. M. Bell, J. G. Masek, C. Huang, and G. W. Meigs. 2016. Forest disturbance across the conterminous United States from 1985- 2012: The emerging dominance of forest decline. Forest Ecology and Management 360: 242 - 252.
dc.identifier.citedreferenceCurtis, P. S., and C. M. Gough. 2018. Forest aging, disturbance and the carbon cycle. New Phytologist 219: 1188 - 1193.
dc.identifier.citedreferenceCurtis, P. S., P. J. Hanson, P. Bolstad, C. Barford, J. C. Randolph, H. P. Schmid, and K. B. Wilson. 2002. Biometric and eddy- covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agricultural and Forest Meteorology 113: 3 - 19.
dc.identifier.citedreferenceCurtis, P. S., C. S. Vogel, C. M. Gough, H. P. Schmid, H. B. Su, and B. D. Bovard. 2005. Respiratory carbon losses and the carbon- use efficiency of a northern hardwood forest, 1999- 2003. New Phytologist 167: 437 - 455.
dc.identifier.citedreferenceDietze, M. C., and J. H. Matthes. 2014. A general ecophysiological framework for modelling the impact of pests and pathogens on forest ecosystems. Ecology Letters 17: 1418 - 1426.
dc.identifier.citedreferenceDragoni, D., H. P. Schmid, C. A. Wayson, H. Potter, C. S. B. Grimmond, and J. C. Randolph. 2011. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south- central Indiana, USA. Global Change Biology 17: 886 - 897.
dc.identifier.citedreferenceEllison, A. M., et al. 2005. Loss of foundation species: Consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment 3: 479 - 486.
dc.identifier.citedreferenceFahey, R. T., et al. 2019. Defining a spectrum of integrative trait- based vegetation canopy structural types. Ecology Letters 22: 2049 - 2059.
dc.identifier.citedreferenceFahey, R. T., E. J. Stuart- Haentjens, C. M. Gough, A. De La Cruz, E. Stockton, C. S. Vogel, and P. S. Curtis. 2016. Evaluating forest subcanopy response to moderate severity disturbance and contribution to ecosystem- level productivity and resilience. Forest Ecology and Management 376: 135 - 147.
dc.identifier.citedreferenceFarquhar, G. D., S. V. Caemmerer, and J. A. Berry. 1980. A biochemical- model of photosynthetic CO2 assimilation in leaves of C- 3 species. Planta 149: 78 - 90.
dc.identifier.citedreferenceFinzi, A. C., et al. 2020. Carbon budget of the harvard forest long- term ecological research site: pattern, process, and response to global change. Ecological Monographs 90: e01423.
dc.identifier.citedreferenceFlower, C. E., and M. A. Gonzalez- Meler. 2015. Responses of temperate forest productivity to insect and pathogen disturbances. Pages 547 - 569 in S. S. Merchant, editor. Annual review of plant biology. Volume 66. Annual Reviews, Palo Alto, California, USA.
dc.identifier.citedreferenceFoster, D. R., J. D. Aber, J. M. Melillo, R. D. Bowden, and F. A. Bazzaz. 1997. Forest response to disturbance and anthropogenic stress. BioScience 47: 437 - 445.
dc.identifier.citedreferenceFranklin, J. F., R. J. Mitchell, and B. J. Palik. 2007. Natural disturbance and stand development principles for ecological forestry. General Technical Report NRS- 19. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, Pennsylvania, USA.
dc.identifier.citedreferenceFrelich, L. E., and P. B. Reich. 1995. Spatial patterns and succession in a Minnesota southern- boreal forest. Ecological Monographs 65: 325 - 346.
dc.identifier.citedreferenceFroelich, N., H. Croft, J. M. Chen, A. Gonsamo, and R. M. Staebler. 2015. Trends of carbon fluxes and climate over a mixed temperate- boreal transition forest in southern Ontario, Canada. Agricultural and Forest Meteorology 211: 72 - 84.
dc.identifier.citedreferenceGoetz, S. J., et al. 2012. Observations and assessment of forest carbon dynamics following disturbance in North America. Journal of Geophysical Research: Biogeosciences 117: G02022.
dc.identifier.citedreferenceGoring, S. J., et al. 2016. Novel and lost forests in the upper Midwestern United States, from new estimates of settlement- era composition, stem density, and biomass. PLoS ONE 11: 34.
dc.identifier.citedreferenceGough, C. 2021. Gough et al._NEP a decade following accelerated succession. Figshare. Dataset. https://doi.org/10.6084/m9.figshare.13286666.v1
dc.identifier.citedreferenceGough, C. M., J. W. Atkins, R. T. Fahey, and B. S. Hardiman. 2019. High rates of primary production in structurally complex forests. Ecology 100: e02864.
dc.identifier.citedreferenceGough, C. M., J. W. Atkins, R. T. Fahey, B. S. Hardiman, and E. A. LaRue. 2020. Community and structural constraints on the complexity of eastern North American forests. Global Ecology and Biogeography 29: 2107 - 2118.
dc.identifier.citedreferenceGough, C., G. Bohrer, and P. Curtis. 2021a. AmeriFlux US- UMB University of Michigan Biological Station, Version 16- 5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246107
dc.identifier.citedreferenceGough, C., G. Bohrer, and P. Curtis. 2021b. AmeriFlux US- UMd UMBS Disturbance, Version 10- 5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246134
dc.identifier.citedreferenceGough, C. M., P. S. Curtis, B. S. Hardiman, C. M. Scheuermann, and B. Bond- Lamberty. 2016. Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests. Ecosphere 7: e01375.
dc.identifier.citedreferenceGough, C. M., B. S. Hardiman, L. E. Nave, G. Bohrer, K. D. Maurer, C. S. Vogel, K. J. Nadelhoffer, and P. S. Curtis. 2013. Sustained carbon uptake and storage following moderate disturbance in a great lakes forest. Ecological Applications 23: 1202 - 1215.
dc.identifier.citedreferenceGough, C. M., C. S. Vogel, B. Hardiman, and P. S. Curtis. 2010. Wood net primary production resilience in an unmanaged forest transitioning from early to middle succession. Forest Ecology and Management 260: 36 - 41.
dc.identifier.citedreferenceGough, C. M., C. S. Vogel, H. P. Schmid, and P. S. Curtis. 2008a. Controls on annual forest carbon storage: Lessons from the past and predictions for the future. BioScience 58: 609 - 622.
dc.identifier.citedreferenceGough, C. M., C. S. Vogel, H. P. Schmid, H. B. Su, and P. S. Curtis. 2008b. Multi- year convergence of biometric and meteorological estimates of forest carbon storage. Agricultural and Forest Meteorology 148: 158 - 170.
dc.identifier.citedreferenceGrigri, M. S., J. W. Atkins, C. Vogel, B. Bond- Lamberty, and C. M. Gough. 2020. Aboveground wood production is sustained in the first growing season after phloem- disrupting disturbance. Forests 11: 1306.
dc.identifier.citedreferenceHanson, J. J., and C. G. Lorimer. 2007. Forest structure and light regimes following moderate wind storms: implications for multi- cohort management. Ecological Applications 17: 1325 - 1340.
dc.identifier.citedreferenceHardiman, B. S., G. Bohrer, C. M. Gough, C. S. Vogel, and P. S. Curtis. 2011. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology 92: 1818 - 1827.
dc.identifier.citedreferenceHardiman, B. S., C. M. Gough, A. Halperin, K. L. Hofmeister, L. E. Nave, G. Bohrer, and P. S. Curtis. 2013b. Maintaining high rates of carbon storage in old forests: A mechanism linking canopy structure to forest function. Forest Ecology and Management 298: 111 - 119.
dc.identifier.citedreferenceHarmon, M. E., B. Bond- Lamberty, J. W. Tang, and R. Vargas. 2011. Heterotrophic respiration in disturbed forests: A review with examples from North America. Journal of Geophysical Research: Biogeosciences 116: G00K04.
dc.identifier.citedreferenceHicke, J. A., et al. 2012. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology 18: 7 - 34.
dc.identifier.citedreferenceHickey, L. J., J. Atkins, R. T. Fahey, M. R. Kreider, S. B. Wales, and C. M. Gough. 2019. Contrasting development of canopy structure and primary production in planted and naturally regenerated red pine forests. Forests 10: 566.
dc.identifier.citedreferenceHillebrand, H., S. Langenheder, K. Lebret, E. Lindstrom, O. Ostman, and M. Striebel. 2018. Decomposing multiple dimensions of stability in global change experiments. Ecology Letters 21: 21 - 30.
dc.identifier.citedreferenceHou, L., Z. Li, C. L. Luo, L. L. Bai, and N. N. Dong. 2016. Optimization forest thinning measures for carbon budget in a mixed pine- oak stand of the qingling mountains, China: A case study. Forests 7: 16.
dc.identifier.citedreferenceHurteau, M. D., B. A. Hungate, G. W. Koch, M. P. North, and G. R. Smith. 2013. Aligning ecology and markets in the forest carbon cycle. Frontiers in Ecology and the Environment 11: 37 - 42.
dc.identifier.citedreferenceJohnson, E. A., and K. Miyanishi. 2008. Testing the assumptions of chronosequences in succession. Ecology Letters 11: 419 - 431.
dc.identifier.citedreferenceKautz, M., A. J. H. Meddens, R. J. Hall, and A. Arneth. 2017. Biotic disturbances in northern hemisphere forests- a synthesis of recent data, uncertainties and implications for forest monitoring and modelling. Global Ecology and Biogeography 26: 533 - 552.
dc.identifier.citedreferenceKeenan, T. F., D. Y. Hollinger, G. Bohrer, D. Dragoni, J. W. Munger, H. P. Schmid, and A. D. Richardson. 2013. Increase in forest water- use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499: 324 - 327.
dc.identifier.citedreferenceKeith, H., D. Lindenmayer, B. Mackey, D. Blair, L. Carter, L. McBurney, S. Okada, and T. Konishi- Nagano. 2014. Managing temperate forests for carbon storage: Impacts of logging versus forest protection on carbon stocks. Ecosphere 5: 75.
dc.identifier.citedreferenceKosiba, A. M., G. W. Meigs, J. A. Duncan, J. A. Pontius, W. S. Keeton, and E. R. Tait. 2018. Spatiotemporal patterns of forest damage and disturbance in the Northeastern United States: 2000- 2016. Forest Ecology and Management 430: 94 - 104.
dc.identifier.citedreferenceKweon, D., and P. G. Comeau. 2019. Factors influencing overyielding in young boreal mixedwood stands in western Canada. Forest Ecology and Management 432: 546 - 557.
dc.identifier.citedreferenceLandhausser, S. M., and V. J. Lieffers. 2002. Leaf area renewal, root retention and carbohydrate reserves in a clonal tree species following above- ground disturbance. Journal of Ecology 90: 658 - 665.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.