Show simple item record

Diffusion‐weighted and dynamic contrast‐enhanced MRI to assess radiation therapy response for head and neck paragangliomas

dc.contributor.authorOta, Yoshiaki
dc.contributor.authorLiao, Eric
dc.contributor.authorKurokawa, Ryo
dc.contributor.authorSyed, Faiz
dc.contributor.authorBaba, Akira
dc.contributor.authorKurokawa, Mariko
dc.contributor.authorMoritani, Toshio
dc.contributor.authorSrinivasan, Ashok
dc.date.accessioned2021-10-05T15:07:06Z
dc.date.available2022-10-05 11:07:04en
dc.date.available2021-10-05T15:07:06Z
dc.date.issued2021-09
dc.identifier.citationOta, Yoshiaki; Liao, Eric; Kurokawa, Ryo; Syed, Faiz; Baba, Akira; Kurokawa, Mariko; Moritani, Toshio; Srinivasan, Ashok (2021). "Diffusion‐weighted and dynamic contrast‐enhanced MRI to assess radiation therapy response for head and neck paragangliomas." Journal of Neuroimaging 31(5): 1035-1043.
dc.identifier.issn1051-2284
dc.identifier.issn1552-6569
dc.identifier.urihttps://hdl.handle.net/2027.42/170244
dc.description.abstractBackground and PurposeThe prediction of radiotherapy outcome in head and neck paragangliomas is clinically important. We investigated perfusion and diffusion markers for evaluation of response to radiotherapy of head and neck paragangliomas.MethodsWe retrospectively reviewed 330 consecutive patients from January 2016 to September 2019 with suspected head and neck paragangliomas, and enrolled 11 patients (2 males, 9 females; age: 55.2 ± 10.3 years) who had conventional MRI and dynamic contrast‐enhanced (DCE)‐MRI before and after radiation therapy. Radiation therapy, consisting of external beam radiotherapy or stereotactic radiotherapy, was conducted at the radiation oncology department in a single center. Mean apparent diffusion coefficient (ADC), normalized mean ADC, and parameters of DCE‐MRI were compared between pre‐ and post‐treatment status by paired t‐test. The Pearson correlation coefficient was used for the relationship between tumor volume ratio (post‐treatment status/pre‐treatment status) and pre‐treatment and post‐treatment values.ResultsMean and normalized ADC values were statistically higher in post‐treatment status than pre‐treatment status (p = 0.005, p = 0.005, respectively), and Ktrans (volume transfer constant between extravascular, extracellular space [EES], and blood plasma per minute) and Kep (rate transfer constant between EES and blood plasma per minute) were significantly lower in post‐treatment status than pre‐treatment status (p = 0.007, p = 0.027, respectively). The correlation coefficient of the relationship between tumor volume ratio and pre‐treatment Ktrans (r = 0.70; p = 0.016) and between tumor volume ratio and post‐treatment Ktrans and Kep (r = 0.83; p = 0.002, r = 0.8; p = 0.003, respectively) was statistically significant.ConclusionsKtrans has predictive potential to predict the response to radiation therapy of head and neck paragangliomas.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhead and neck
dc.subject.otherDCE‐MRI
dc.subject.otherDWI
dc.subject.otherparaganglioma
dc.subject.otherradiation therapy
dc.titleDiffusion‐weighted and dynamic contrast‐enhanced MRI to assess radiation therapy response for head and neck paragangliomas
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170244/1/jon12875.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170244/2/jon12875_am.pdf
dc.identifier.doi10.1111/jon.12875
dc.identifier.sourceJournal of Neuroimaging
dc.identifier.citedreferenceRoberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast‐enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000; 21: 891 ‐ 9.
dc.identifier.citedreferenceWithey SJ, Perrio S, Christodoulou D, Izatt L, Carroll P, Velusamy A, et al. Imaging features of succinate dehydrogenase‐deficient pheochromocytoma‐paraganglioma syndromes. Radiographics 2019; 39: 1393 ‐ 410.
dc.identifier.citedreferenceWilliams MD, Rich TA. Paragangliomas arising in the head and neck: a morphologic review and genetic update. Surg Pathol Clin 2014; 7: 543 ‐ 57.
dc.identifier.citedreferencePatel D, Phay JE, Yen TWF, Dickson PV, Wang TS, Garcia R, et al. Update on pheochromocytoma and paraganglioma from the SSO endocrine/head and neck disease‐site work group. Part 1 of 2: advances in pathogenesis and diagnosis of pheochromocytoma and paraganglioma. Ann Surg Oncol 2020; 27: 1329 ‐ 37.
dc.identifier.citedreferenceWoolen S, Gemmete JJ. Paragangliomas of the head and neck. Neuroimaging Clin N Am 2016; 26: 259 ‐ 78.
dc.identifier.citedreferenceGilbo P, Morris CG, Amdur RJ, Werning JW, Dziegielewski PT, Kirwan J, et al. Radiotherapy for benign head and neck paragangliomas: a 45‐year experience. Cancer 2014; 120: 3738 ‐ 43.
dc.identifier.citedreferenceHu K, Persky MS. Treatment of head and neck paragangliomas. Cancer Control 2016; 23: 228 ‐ 41.
dc.identifier.citedreferenceMukherji SK, Kasper ME, Tart RP, Mancuso AA. Irradiated paragangliomas of the head and neck: CT and MR appearance. AJNR Am J Neuroradiol 1994; 15: 357 ‐ 63.
dc.identifier.citedreferenceKim S, Loevner L, Quon H, Sherman E, Weinstein G, Kilger A, et al. Diffusion‐weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res 2009; 15: 986 ‐ 94.
dc.identifier.citedreferenceFangberget A, Nilsen LB, Hole KH, Holmen MM, Engebraaten O, Naume B, et al. Neoadjuvant chemotherapy in breast cancer‐response evaluation and prediction of response to treatment using dynamic contrast‐enhanced and diffusion‐weighted MR imaging. Eur Radiol 2011; 21: 1188 ‐ 99.
dc.identifier.citedreferenceGaeta M, Benedetto C, Minutoli F, D’Angelo T, Amato E, Mazziotti S, et al. Use of diffusion‐weighted, intravoxel incoherent motion, and dynamic contrast‐enhanced MR imaging in the assessment of response to radiotherapy of lytic bone metastases from breast cancer. Acad Radiol 2014; 21: 1286 ‐ 93.
dc.identifier.citedreferenceThoeny HC, De Keyzer F, King AD. Diffusion‐weighted MR imaging in the head and neck. Radiology 2012; 263: 19 ‐ 32.
dc.identifier.citedreferenceSrinivasan A, Dvorak R, Perni K, Rohrer S, Mukherji SK. Differentiation of benign and malignant pathology in the head and neck using 3T apparent diffusion coefficient values: early experience. AJNR Am J Neuroradiol 2008; 29: 40 ‐ 4.
dc.identifier.citedreferenceKoontz NA, Wiggins RH 3rd. Differentiation of benign and malignant head and neck lesions with diffusion tensor imaging and DWI. AJR Am J Roentgenol 2017; 208: 1110 ‐ 5.
dc.identifier.citedreferenceZhao M, Guo LL, Huang N, Wu Q, Zhou L, Zhao H, et al. Quantitative analysis of permeability for glioma grading using dynamic contrast‐enhanced magnetic resonance imaging. Oncol Lett 2017; 14: 5418 ‐ 26.
dc.identifier.citedreferenceTischler AS, deKrijger RR. 15 years of paraganglioma: pathology of pheochromocytoma and paraganglioma. Endocr Relat Cancer 2015; 22: 123 ‐ 33.
dc.identifier.citedreferenceOffergeld C, Brase C, Yaremchuk S, Madar I, Rischke HC, Gläsker S, et al. Head and neck paragangliomas: clinical and molecular genetic classification. Clinics (Sao Paulo) 2012; 67 (Suppl 1 ): 19 ‐ 28.
dc.identifier.citedreferenceAhlawat S, Khandheria P, Grande FD, Morelli J, Subhawong TK, Demehri S, et al. Interobserver variability of selective region‐of‐interest measurement protocols for quantitative diffusion weighted imaging in soft tissue masses: comparison with whole tumor volume measurements. J Magn Reson Imaging 2016; 43: 446 ‐ 54.
dc.identifier.citedreferenceHan X, Suo S, Sun Y, Zu J, Qu J, Zhou Y, et al. Apparent diffusion coefficient measurement in glioma: influence of region‐of‐interest determination methods on apparent diffusion coefficient values, interobserver variability, time efficiency, and diagnostic ability. J Magn Reson Imaging 2017; 45: 722 ‐ 30.
dc.identifier.citedreferenceJansen JC, van den Berg R, Kuiper A, van der Mey AG, Zwinderman AH, Cornelisse CJ. Estimation of growth rate in patients with head and neck paragangliomas influences the treatment proposal. Cancer 2000; 88: 2811 ‐ 6.
dc.identifier.citedreferenceWang JT, Wang AY, Cheng S, Gomes L, Da Cruz M. Growth rate analysis of an untreated glomus vagale on MRI. Case Rep Otolaryngol 2016; 2016: 8756940.
dc.identifier.citedreferenceHeesterman BL, de Pont LMH, Verbist BM, Mey AVD, Corssmit E, Hes F, et al. Age and tumor volume predict growth of carotid and vagal body paragangliomas. J Neurol Surg B Skull Base 2017; 78: 497 ‐ 505.
dc.identifier.citedreferenceChang CA, Pattison DA, Tothill RW, Kong G, Akhurst TJ, Hicks RJ, et al. (68) Ga‐DOTATATE and (18)F‐FDG PET/CT in paraganglioma and pheochromocytoma: utility, patterns and heterogeneity. Cancer Imaging 2016; 16: 22.
dc.identifier.citedreferenceTelischi FF, Bustillo A, Whiteman ML, Serafini AN, Reisberg MJ, Gomez‐Marin O, et al. Octreotide scintigraphy for the detection of paragangliomas. Otolaryngol Head Neck Surg 2000; 122: 358 ‐ 62.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.