Show simple item record

Is the tropical cyclone surge in Shanghai more sensitive to landfall location or intensity change?

dc.contributor.authorWang, Shuai
dc.contributor.authorToumi, Ralf
dc.contributor.authorYe, Qinghua
dc.contributor.authorKe, Qian
dc.contributor.authorBricker, Jeremy
dc.contributor.authorTian, Zhan
dc.contributor.authorSun, Laixiang
dc.date.accessioned2021-10-05T15:07:16Z
dc.date.available2022-11-05 11:07:14en
dc.date.available2021-10-05T15:07:16Z
dc.date.issued2021-10
dc.identifier.citationWang, Shuai; Toumi, Ralf; Ye, Qinghua; Ke, Qian; Bricker, Jeremy; Tian, Zhan; Sun, Laixiang (2021). "Is the tropical cyclone surge in Shanghai more sensitive to landfall location or intensity change?." Atmospheric Science Letters 22(10): n/a-n/a.
dc.identifier.issn1530-261X
dc.identifier.issn1530-261X
dc.identifier.urihttps://hdl.handle.net/2027.42/170249
dc.description.abstractIt has been shown that the proportion of intense tropical cyclones (TCs) has been increasing together with a poleward migration of TC track. However, their relative importance to TC surge at landfall remains unknown. Here we examine the sensitivity of TC surge in Shanghai to landfall location and intensity with a new dynamical modelling framework. We find a surge sensitivity of 0.8 m (°N)−1 to landfall location, and 0.1 m (m s−1)−1 to wind speed in Shanghai during landfall. The landfall location and intensity are comparably important to surge variation. However, based on a plausible range of reported trends of TC poleward migration and intensity, the potential surge hazard due to poleward migration is estimated to be about three times larger than that by intensity change. The long‐term surge risk in Shanghai is therefore substantially more sensitive to changes of TC track and landfall location than intensity. This may also be true elsewhere and in the future.The tropical cyclone (TC) intensity and landfall location are comparably important to case‐by‐case variation in surge.The observed poleward migration of TC tracks may dominate the long‐term surge change.A new dynamical model is developed for TC surge assessment in Shanghai.
dc.publisherJohn Wiley & Sons, Ltd.
dc.subject.othertropical cyclone
dc.subject.otherclimate change
dc.subject.otherlandfall
dc.subject.otherstorm surge
dc.titleIs the tropical cyclone surge in Shanghai more sensitive to landfall location or intensity change?
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170249/1/asl21058-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170249/2/asl21058_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170249/3/asl21058.pdf
dc.identifier.doi10.1002/asl.1058
dc.identifier.sourceAtmospheric Science Letters
dc.identifier.citedreferenceSharmila, S. and Walsh, K.J. ( 2018 ) Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion. Nature Climate Change, 8, 730 – 736. https://doi.org/10.1038/s41558-018-0227-5.
dc.identifier.citedreferenceKossin, J.P., Emanuel, K.A. and Camargo, S.J. ( 2016 ) Past and projected changes in western north pacific tropical cyclone exposure. Journal of Climate, 29, 5725 – 5739.
dc.identifier.citedreferenceKossin, J.P., Emanuel, K.A. and Vecchi, G.A. ( 2014 ) The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349 – 352. http://www.nature.com/articles/nature13278.
dc.identifier.citedreferenceLavender, S.L. and McBride, J.L. ( 2020 ) Global climatology of rainfall rates and lifetime accumulated rainfall in tropical cyclones: influence of cyclone basin, cyclone intensity and cyclone size. International Journal of Climatology, 41, 1 – 19.
dc.identifier.citedreferenceLiu, K.S. and Chan, J.C.L. ( 2019 ) Interdecadal variation of frequencies of tropical cyclones, intense typhoons and their ratio over the western North Pacific. International Journal of Climatology, 40, 3954 – 3970. https://doi.org/10.1002/joc.6438.
dc.identifier.citedreferenceMartyr‐Koller, R.C., Kernkamp, H.W., van Dam, A., van der Wegen, M., Lucas, L.V., Knowles, N., Jaffe, B. and Fregoso, T.A. ( 2017 ) Application of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay‐Delta. Estuarine, Coastal and Shelf Science, 192, 86 – 107. https://doi.org/10.1016/j.ecss.2017.04.024.
dc.identifier.citedreferenceMori, N., Kato, M., Kim, S., Mase, H., Shibutani, Y., Takemi, T., Tsuboki, K. and Yasuda, T. ( 2014 ) Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf. Geophysical Research Letters, 41, 5106 – 5113. https://doi.org/10.1002/2014GL060689.
dc.identifier.citedreferenceMurakami, H., Delworth, T.L., Cooke, W.F., Zhao, M., Xiang, B. and Hsu, P.C. ( 2020 ) Detected climatic change in global distribution of tropical cyclones. Proceedings of the National Academy of Sciences of the United States of America, 117, 10706 – 10714.
dc.identifier.citedreferencePark, D.‐S.R., Ho, C.‐H. and Kim, J.‐H. ( 2014 ) Growing threat of intense tropical cyclones to East Asia over the period 1977–2010. Environmental Research Letters, 9, 014008. http://stacks.iop.org/1748-9326/9/i=1/a=014008?key=crossref.1768076a048565351c334b902ac24053.
dc.identifier.citedreferencePielke, R.A., Gratz, J., Landsea, C.W., Collins, D., Saunders, M.A. and Musulin, R. ( 2008 ) Normalized hurricane damage in the United States: 1900–2005. Natural Hazards Review, 9, 29 – 42.
dc.identifier.citedreferenceRego, J.L. and Li, C. ( 2009 ) On the importance of the forward speed of hurricanes in storm surge forecasting: a numerical study. Geophysical Research Letters, 36, 1 – 5.
dc.identifier.citedreferenceSimpson, R.H. and Saffir, H. ( 1974 ) The hurricane disaster potential scale. Weatherwise, 27, 169.
dc.identifier.citedreferenceSkamarock, W., Klemp, J., Dudhi, J., Gill, D., Barker, D., Duda, M., Huang, X.‐Y., Wang, W. and Powers, J. ( 2008 ) A description of the advanced research WRF version 3. Technical Report, 113.
dc.identifier.citedreferenceSmall, C. and Nicholls, R.J. ( 2003 ) A global analysis of human settlement in coastal zones. Journal of Coastal Research, 19, 584 – 599.
dc.identifier.citedreferenceSun, J., Wang, D., Hu, X., Ling, Z. and Wang, L. ( 2019 ) Ongoing poleward migration of tropical cyclone occurrence over the Western North Pacific Ocean. Geophysical Research Letters, 46, 9110 – 9117.
dc.identifier.citedreferenceSun, Y., Zhong, Z., Li, T., Yi, L., Hu, Y., Wan, H., Chen, H., Liao, Q., Ma, C. and Li, Q. ( 2017 ) Impact of ocean warming on tropical cyclone size and its destructiveness. Scientific Reports, 7, 8154. http://www.nature.com/articles/s41598-017-08533-6.
dc.identifier.citedreferenceWang, J., Yi, S., Li, M., Wang, L. and Song, C. ( 2018 ) Effects of sea level rise, land subsidence, bathymetric change and typhoon tracks on storm flooding in the coastal areas of Shanghai. Science of the Total Environment, 621, 228 – 234.
dc.identifier.citedreferenceWang, S. and Toumi, R. ( 2016 ) On the relationship between hurricane cost and the integrated wind profile. Environmental Research Letters, 11, 114005. http://stacks.iop.org/1748-9326/11/i=11/a=114005?key=crossref.b8c4fd8906504a99c87f1218d5c8042f.
dc.identifier.citedreferenceWang, S. and Toumi, R. ( 2018a ) A historical analysis of the mature stage of tropical cyclones. International Journal of Climatology, 38, 2490 – 2505. https://doi.org/10.1002/joc.5374.
dc.identifier.citedreferenceWang, S. and Toumi, R. ( 2018b ) Reduced sensitivity of tropical cyclone intensity and size to sea surface temperature in a radiative‐convective equilibrium environment. Advances in Atmospheric Sciences, 35, 981 – 993. https://doi.org/10.1007/s00376-018-7277-5.
dc.identifier.citedreferenceWang, S. and Toumi, R. ( 2019 ) Impact of dry midlevel air on the tropical cyclone outer circulation. Journal of the Atmospheric Sciences, 76, 1809 – 1826. https://doi.org/10.1175/JAS-D-18-0302.1.
dc.identifier.citedreferenceWeisberg, R.H. and Zheng, L. ( 2006 ) Hurricane storm surge simulations for Tampa Bay. Estuaries and Coasts, 29, 899 – 913.
dc.identifier.citedreferenceWong, B. and Toumi, R. ( 2016a ) Effect of extreme ocean precipitation on sea surface elevation and storm surges. Quarterly Journal of the Royal Meteorological Society, 142, 2541 – 2550.
dc.identifier.citedreferenceWong, B. and Toumi, R. ( 2016b ) Model study of the asymmetry in tropical cyclone‐induced positive and negative surges. Atmospheric Science Letters, 17, 334 – 338.
dc.identifier.citedreferenceXu, J. and Wang, Y. ( 2010 ) Sensitivity of tropical cyclone inner‐core size and intensity to the radial distribution of surface entropy flux. Journal of the Atmospheric Sciences, 67, 1831 – 1852.
dc.identifier.citedreferenceYoshida, K., Sugi, M., Mizuta, R., Murakami, H. and Ishii, M. ( 2017 ) Future changes in tropical cyclone activity in high‐resolution large‐ensemble simulations. Geophysical Research Letters, 44, 9910 – 9917.
dc.identifier.citedreferenceAnthes, R.A. ( 1982 ) Tropical Cyclones‐Their Evolution, Structure and Effects. Boston, MA: The American Meteorological Society.
dc.identifier.citedreferenceBruneau, N., Wang, S. and Toumi, R. ( 2020 ) Long memory impact of ocean mesoscale temperature anomalies on tropical cyclone size. Geophysical Research Letters, 47, 1 – 19. https://doi.org/10.1029/2019GL086165.
dc.identifier.citedreferenceBruyère, C.L., Done, J.M., Jaye, A.B., Holland, G.J., Buckley, B., Henderson, D.J., Leplastrier, M. and Chan, P. ( 2019 ) Physically‐based landfalling tropical cyclone scenarios in support of risk assessment. Weather and Climate Extremes, 26, 1 – 13.
dc.identifier.citedreferenceChan, K.T.F. and Chan, J.C.L. ( 2015 ) Impacts of vortex intensity and outer winds on tropical cyclone size. Quarterly Journal of the Royal Meteorological Society, 141, 525 – 537.
dc.identifier.citedreferenceConner, W.C., Kraft, R.H. and Harris, D.L. ( 1957 ) Empirical methods for forecasting the maximum storm tide due to hurricanes and other tropical storms. Monthly Weather Review, 85, 113 – 116.
dc.identifier.citedreferenceDaloz, A.S. and Camargo, S.J. ( 2018 ) Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis? Climate Dynamics, 50, 705 – 715. https://www.ncdc.noaa.gov/ibtracs/.
dc.identifier.citedreferenceDe Goede, E.D. ( 2020 ) Historical overview of 2D and 3D hydrodynamic modelling of shallow water flows in the Netherlands. Ocean Dynamics, 70, 521 – 539.
dc.identifier.citedreferenceEmanuel, K. ( 2005 ) Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686 – 688.
dc.identifier.citedreferenceFogarty, E.A., Elsner, J.B., Jagger, T.H., Liu, K.B. and Louie, K.S. ( 2006 ) Variations in typhoon landfalls over China. Advances in Atmospheric Sciences, 23, 665 – 677.
dc.identifier.citedreferenceRappaport, E.N. ( 2014 ) Fatalities in the United States from atlantic tropical cyclones: new data and interpretation. Bulletin of the American Meteorological Society, 95, 341 – 346.
dc.identifier.citedreferenceFudeyasu, H. and Wang, Y. ( 2011 ) Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: outer‐core spinup process. Journal of the Atmospheric Sciences, 68, 430 – 449. https://doi.org/10.1175/2010JAS3523.1.
dc.identifier.citedreferenceHanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee‐Morlot, J., Herweijer, C. and Chateau, J. ( 2011 ) A global ranking of port cities with high exposure to climate extremes. Climatic Change, 104, 89 – 111.
dc.identifier.citedreferenceHarris, D.L. ( 1963 ) Characteristics of the Hurricane Storm Surge. Melbourne, FL: Department of Commerce, Weather Bureau.
dc.identifier.citedreferenceIrish, J.L., Resio, D.T. and Ratcliff, J.J. ( 2008 ) The influence of storm size on hurricane surge. Journal of Physical Oceanography, 38, 2003 – 2013.
dc.identifier.citedreferenceJelesnianski, C.P. ( 1966 ) Numerical computations of storm surges without bottom stress. Monthly Weather Review, 94, 379 – 394.
dc.identifier.citedreferenceJelesnianski, C.P. ( 1992 ) SLOSH: sea, lake, and overland surges from hurricanes. Tech. Rep. Silver Spring, MD: US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service.
dc.identifier.citedreferenceJoyce, B.R., Gonzalez‐Lopez, J., Van der Westhuysen, A.J., Yang, D., Pringle, W.J., Westerink, J.J. and Cox, A.T. ( 2019 ) U.S. IOOS coastal and ocean modeling testbed: hurricane‐induced winds, waves, and surge for deep ocean, reef‐fringed Islands in the Caribbean. Journal of Geophysical Research: Oceans, 124, 2876 – 2907.
dc.identifier.citedreferenceKe, Q., Yin, J., Bricker, J., Savage, N., Buonomo, E., Ye, Q., Visser, P., Dong, G., Wang, S., Tian, Z., Sun, L., Toumi, R. and Jonkman, S. ( 2021 ) Typhoon‐induced flood hazard increases under climate change: a case study in Shanghai. Natural Hazards In print.
dc.identifier.citedreferenceKernkamp, H.W., Van Dam, A., Stelling, G.S. and De Goede, E.D. ( 2011 ) Efficient scheme for the shallow water equations on unstructured grids with application to the continental shelf. Ocean Dynamics, 61, 1175 – 1188.
dc.identifier.citedreferenceKnutson, T.R., Camargo, S.J., Chan, J.C.L., Emanuel, K., Ho, C.‐H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K. and Wu, L. ( 2019 ) Tropical cyclones and climate change assessment: part I: detection and attribution. Bulletin of the American Meteorological Society, 100, 1987 – 2007. https://doi.org/10.1175/BAMS-D-18-0189.1.
dc.identifier.citedreferenceKnutson, T.R., Camargo, S.J., Chan, J.C.L., Emanuel, K., Ho, C.‐H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K. and Wu, L. ( 2020 ) Tropical cyclones and climate change assessment: part II: projected response to anthropogenic warming. Bulletin of the American Meteorological Society, 101, E303 – E322. https://doi.org/10.1175/BAMS-D-18-0194.1.
dc.identifier.citedreferenceKnutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G. and Chavas, D. ( 2015 ) Global projections of intense tropical cyclone activity for the late twenty‐first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. Journal of Climate, 28, 7203 – 7224. https://doi.org/10.1175/JCLI-D-15-0129.1.
dc.identifier.citedreferenceKnutson, T.R. and Tuleya, R.E. ( 2004 ) Impact of CO 2 ‐induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. Journal of Climate, 17, 3477 – 3495.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.