Show simple item record

Targeted Nanoscale 3D Thermal Imaging of Tumor Cell Surface with Functionalized Quantum Dots

dc.contributor.authorYang, Jun
dc.contributor.authorDu, Hanliang
dc.contributor.authorChai, Zhenhao
dc.contributor.authorLing, Zheng
dc.contributor.authorLi, Ben Q.
dc.contributor.authorMei, Xuesong
dc.date.accessioned2021-10-05T15:07:23Z
dc.date.available2022-11-05 11:07:21en
dc.date.available2021-10-05T15:07:23Z
dc.date.issued2021-10
dc.identifier.citationYang, Jun; Du, Hanliang; Chai, Zhenhao; Ling, Zheng; Li, Ben Q.; Mei, Xuesong (2021). "Targeted Nanoscale 3D Thermal Imaging of Tumor Cell Surface with Functionalized Quantum Dots." Small 17(39): n/a-n/a.
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/2027.42/170252
dc.description.abstractMeasuring the changes in tumor cell surface temperature can provide insights into cellular metabolism and pathological features, which is significant for targeted chemotherapy and hyperthermic therapy. However, conventional micro–nano scale methods are invasive and can only measure the temperature of cells across a single plane, which excludes specific organelles. In this study, fluorescence quantum dots (QDs) are functionalized with the membrane transport protein transferrin (Tf) as a thermo‐sensor specific for tumor cell membrane. The covalent conjugation is optimized to maintain the relative fluorescence intensity of the Tf‐QDs to >90%. In addition, the Tf‐QDs undergo changes in the fluorescence spectra as a function of temperature, underscoring its thermo‐sensor function. Double helix point spread function imaging optical path is designed to locate the probe at nanoscale, and 3D thermal imaging technology is proposed to measure the local temperature distribution and direction of heat flux on the tumor cell surface. This novel targeted nanoscale 3D thermometry method can be a highly promising tool for measuring the local and global temperature distribution across intracellular organelles.Measuring the temperature changes in tumor cell surface is significant for targeted chemotherapy and hyperthermic therapy. In this study, a targeted nanoscale 3D thermometry novel method is presented, which is based on transferrin functionalized fluorescence quantum dots as a thermo‐sensor and double helix point spread function imaging optical path to locate the probes.
dc.publisherWiley Periodicals, Inc.
dc.subject.other3D thermal imaging
dc.subject.otherfunctionalized quantum dot
dc.subject.othernanoscale temperature measurement
dc.subject.othertargeted thermometry
dc.subject.othertumor cell
dc.titleTargeted Nanoscale 3D Thermal Imaging of Tumor Cell Surface with Functionalized Quantum Dots
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170252/1/smll202102807-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170252/2/smll202102807.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170252/3/smll202102807_am.pdf
dc.identifier.doi10.1002/smll.202102807
dc.identifier.sourceSmall
dc.identifier.citedreferenceM. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, W. E. Moerner, Proc. Natl. Acad. Sci. USA 2010, 107, 17864.
dc.identifier.citedreferenceJ.‐M. Yang, H. Yang, L. Lin, ACS Nano 2011, 5, 5067.
dc.identifier.citedreferenceL. Wei, Y. Ma, X. Shi, Y. Wang, X. Su, C. Yu, S. Xiang, L. Xiao, B. Chen, J. Mater. Chem. B 2017, 5, 3383.
dc.identifier.citedreferenceK. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, S. Uchiyama, Nat. Commun. 2012, 3, 705.
dc.identifier.citedreferenceJ. Yang, B. Q. Li, R. Li, X. Mei, Nanoscale 2019, 11, 2249.
dc.identifier.citedreferenceJ. Yang, Z. Ling, B. Q. Li, R. Li, X. Mei, Opt. Express 2019, 27, 6770.
dc.identifier.citedreferenceR. A. Sperling, W. J. Parak, Philos. Trans. R. Soc., A 2010, 368, 1333.
dc.identifier.citedreferenceC. Fang, F. Ji, Z. Shu, D. Gao, Lab Chip 2017, 17, 951.
dc.identifier.citedreferenceH. Kawabata, Free Radical Biol. Med. 2019, 133, 46.
dc.identifier.citedreferenceP. E. Cabral Filho, M. P. Cabrera, A. L. C. Cardoso, O. A. Santana, C. F. G. C. Geraldes, B. S. Santos, M. C. Pedroso de Lima, G. A. L. Pereira, A. Fontes, Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 2788.
dc.identifier.citedreferenceC. H. J. Choi, C. A. Alabi, P. Webster, M. E. Davis, Proc. Natl. Acad. Sci. USA 2010, 107, 1235.
dc.identifier.citedreferenceA. von Diezmann, Y. Shechtman, W. E. Moerner, Chem. Rev. 2017, 117, 7244.
dc.identifier.citedreferenceM. Badieirostami, M. D. Lew, M. A. Thompson, W. E. Moerner, Appl. Phys. Lett. 2010, 97, 161103.
dc.identifier.citedreferenceM. D. Lew, S. F. Lee, J. L. Ptacin, M. K. Lee, R. J. Twieg, L. Shapiro, W. E. Moerner, Proc. Natl. Acad. Sci. USA 2011, 108, E1102.
dc.identifier.citedreferenceS. Arai, M. Suzuki, S.‐J. Park, J. S. Yoo, L. Wang, N.‐Y. Kang, H.‐H. Ha, Y.‐T. Chang, Chem. Commun. 2015, 51, 8044.
dc.identifier.citedreferenceA. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, W. E. Moerner, Nano Lett. 2013, 13, 987.
dc.identifier.citedreferenceA. R. Carr, A. Ponjavic, S. Basu, J. McColl, A. M. Santos, S. Davis, E. D. Laue, D. Klenerman, S. F. Lee, Biophys. J. 2017, 112, 1444.
dc.identifier.citedreferenceM. A. Thompson, M. D. Lew, M. Badieirostami, W. E. Moerner, Nano Lett. 2010, 10, 211.
dc.identifier.citedreferenceX. Jiang, J. Shao, B. Q. Li, Appl. Surf. Sci. 2017, 394, 554.
dc.identifier.citedreferenceZ. Grabarek, J. Gergely, Anal. Biochem. 1990, 185, 131.
dc.identifier.citedreferenceH.‐L. Zhang, Y.‐Q. Li, M.‐Z. Zhang, Y.‐D. Zhao, J. Biomed. Opt. 2010, 15, 045003.
dc.identifier.citedreferenceL.‐Y. Guan, Y.‐Q. Li, S. Lin, M.‐Z. Zhang, J. Chen, Z.‐Y. Ma, Y.‐D. Zhao, Anal. Chim. Acta 2012, 741, 86.
dc.identifier.citedreferenceP. E. Cabral Filho, A. L. C. Cardoso, M. I. A. Pereira, A. P. M. Ramos, F. Hallwass, M. M. C. A. Castro, C. F. G. C. Geraldes, B. S. Santos, M. C. Pedroso de Lima, G. A. L. Pereira, A. Fontes, Biochim. Biophys. Acta Gen. Subj. 2016, 1860, 28.
dc.identifier.citedreferenceL. Sun, L. Bao, B.‐R. Hyun, A. C. Bartnik, Y.‐W. Zhong, J. C. Reed, D.‐W. Pang, H. D. Abruna, G. G. Malliaras, F. W. Wise, Nano Lett. 2009, 9, 789.
dc.identifier.citedreferenceD. A. Hines, P. V. Kamat, J. Phys. Chem. C 2013, 117, 14418.
dc.identifier.citedreferenceS. S. Laha, A. R. Naik, E. R. Kuhn, M. Alvarez, A. Sujkowski, R. J. Wessells, B. P. Jena, Nano Lett. 2017, 17, 1262.
dc.identifier.citedreferenceX. Jiang, B. Q. Li, X. Qu, H. Yang, H. Liu, J. Mater. Chem. B 2017, 5, 8983.
dc.identifier.citedreferenceJ. Yang, Z. Ling, R. Li, X. Mei, J. Phys. D: Appl. Phys 2019, 52, 365401.
dc.identifier.citedreferenceM. Chang, Z. Hou, M. Wang, C. Li, J. Lin, Adv. Mater. 2020, 33, 2004788.
dc.identifier.citedreferenceM. A. Pitt, Inflammopharmacology 2015, 23, 17.
dc.identifier.citedreferenceW.‐S. Li, X.‐J. Wang, S. Zhang, J.‐B. Hu, Y.‐L. Du, X.‐Q. Kang, X.‐L. Xu, X.‐Y. Ying, J. You, Y.‐Z. Du, Biomaterials 2017, 131, 36.
dc.identifier.citedreferenceP. C. Ikwegbue, P. Masamba, B. E. Oyinloye, A. P. Kappo, Pharmaceuticals 2018, 11, 2.
dc.identifier.citedreferenceE. A. Repasky, S. S. Evans, M. W. Dewhirst, Cancer Immunol. Res. 2013, 1, 210.
dc.identifier.citedreferenceD. Chretien, P. Benit, H.‐H. Ha, S. Keipert, R. El‐Khoury, Y.‐T. Chang, M. Jastroch, H. T. Jacobs, P. Rustin, M. Rak, PLoS Biol. 2018, 16, e2003992.
dc.identifier.citedreferenceG. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, M. D. Lukin, Nature 2013, 500, 54.
dc.identifier.citedreferenceS. Uchiyama, T. Tsuji, K. Kawamoto, K. Okano, E. Fukatsu, T. Noro, K. Ikado, S. Yamada, Y. Shibata, T. Hayashi, N. Inada, M. Kato, H. Koizumi, H. Tokuyama, Angew. Chem., Int. Ed. 2018, 57, 5413.
dc.identifier.citedreferenceE. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott‐Schwartz, H. F. Hess, Science 2006, 313, 1642.
dc.identifier.citedreferenceY. Ma, M. Wang, W. Li, Z. Zhang, X. Zhang, T. Tan, X.‐E. Zhang, Z. Cui, Nat. Commun. 2017, 8, 15318.
dc.identifier.citedreferenceK. D. Wegner, N. Hildebrandt, Chem. Soc. Rev. 2015, 44, 4792.
dc.identifier.citedreferenceC. Tang, J. Zhou, Z. Qian, Y. Ma, Y. Huang, H. Feng, J. Mater. Chem. B 2017, 5, 1971.
dc.identifier.citedreferenceC. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, L. D. Carlos, Nanoscale 2012, 4, 4799.
dc.identifier.citedreferenceH. Zhao, A. Vomiero, F. Rosei, Small 2020, 16, 2000804.
dc.identifier.citedreferenceA. M. Smith, H. Duan, A. M. Mohs, S. Nie, Adv. Drug Deliv. Rev. 2008, 60, 1226.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.