Spatiotemporal Characterization of Mercury Isotope Baselines and Anthropogenic Influences in Lake Sediment Cores
dc.contributor.author | Lee, Ju Hyeon | |
dc.contributor.author | Kwon, Sae Yun | |
dc.contributor.author | Yin, Runsheng | |
dc.contributor.author | Motta, Laura C. | |
dc.contributor.author | Kurz, Aaron Y. | |
dc.contributor.author | Nam, Seung‐il | |
dc.date.accessioned | 2021-10-05T15:07:28Z | |
dc.date.available | 2022-11-05 11:07:26 | en |
dc.date.available | 2021-10-05T15:07:28Z | |
dc.date.issued | 2021-10 | |
dc.identifier.citation | Lee, Ju Hyeon; Kwon, Sae Yun; Yin, Runsheng; Motta, Laura C.; Kurz, Aaron Y.; Nam, Seung‐il (2021). "Spatiotemporal Characterization of Mercury Isotope Baselines and Anthropogenic Influences in Lake Sediment Cores." Global Biogeochemical Cycles 35(10): n/a-n/a. | |
dc.identifier.issn | 0886-6236 | |
dc.identifier.issn | 1944-9224 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/170254 | |
dc.description.abstract | Increasing mercury isotope ratios from pre- industrial (1510- 1850) to present- day (1990- 2014) in lake sediment cores have been suggested to be a global phenomenon. To assess factors leading to spatiotemporal changes, we compiled mercury concentration (THg) and mercury isotope ratios in 22 lake sediment cores located at various regions of the world. We find that the positive δ202Hg shifts together with THg increases from pre- industrial to present- day are a widespread phenomenon. This is caused by increased contribution of mercury from local to regional anthropogenic mercury emission sources, which lead to higher sediment δ202Hg (- 1.07 ± 0.69- °, 1 SD) than pre- industrial sediments (- 1.55 ± 0.96- °, 1 SD). The positive Î 199Hg shifts were observed in 15 lake sediment cores, which have low pre- industrial Î 199Hg (- 0.20 ± 0.32- °) compared to the sediment cores with near- zero to positive pre- industrial Î 199Hg (0.08 ± 0.07- °). The magnitudes of δ202Hg (r2 = 0.09) and Î 199Hg (r2 = 0.20, both p > 0.05) changes from pre- industrial to present- day did not correlate with the magnitude of THg changes. Instead, the magnitudes of δ202Hg and Î 199Hg changes decreased with increasing pre- industrial δ202Hg and Î 199Hg values, suggesting that the baseline mercury isotope ratios play a more important role in determining the magnitude of mercury isotope changes compared to the degree of THg input. We suggest that the spatiotemporal assessments of δ202Hg in lake sediment cores can be used as an important proxy for monitoring changes in anthropogenic mercury sources for the Minamata Convention on Mercury.Key PointsPositive δ202Hg shifts together with mercury concentration in lake sediment cores from pre- industrial to present- day period are a widespread phenomenonMagnitudes of δ202Hg and Î 199Hg changes are determined by the pre- industrial or baseline values in the sediment cores rather than the degree of mercury inputSediment δ202Hg can be used as a proxy for monitoring changes in anthropogenic mercury sources for the Minamata Convention on Mercury | |
dc.publisher | Springer | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | anthropogenic | |
dc.subject.other | Minamata Convention | |
dc.subject.other | Mercury isotope | |
dc.subject.other | sediment core | |
dc.subject.other | baseline | |
dc.title | Spatiotemporal Characterization of Mercury Isotope Baselines and Anthropogenic Influences in Lake Sediment Cores | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Geological Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/170254/1/gbc21192_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/170254/2/2020GB006904-sup-0001-Supporting_Information_SI-S01.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/170254/3/gbc21192.pdf | |
dc.identifier.doi | 10.1029/2020GB006904 | |
dc.identifier.source | Global Biogeochemical Cycles | |
dc.identifier.citedreference | McKinney, M. A., Atwood, T. C., Pedro, S., & Peacock, E. ( 2017 ). Ecological change drives a decline in mercury concentrations in southern Beaufort Sea polar bears. Environmental Science and Technology, 51 ( 14 ), 7814 - 7822. https://doi.org/10.1021/acs.est.7b00812 | |
dc.identifier.citedreference | Lepak, R. F., & Janssen, S. E. ( 2020 ). Mercury concentrations and isotopic compositions in sediment cores from North American lakes (Alaska, Minnesota, and Newfoundland). U.S. Geological Survey Data Release. https://doi.org/10.5066/P9I5RL9C | |
dc.identifier.citedreference | Lepak, R. F., Janssen, S. E., Engstrom, D. R., Krabbenhoft, D. P., Tate, M. T., Yin, R., et al. ( 2020 ). Resolving atmospheric mercury loading and source trends from isotopic records of remote North American Lake Sediments. Environmental Science and Technology, 54 ( 15 ), 9325 - 9333. https://doi.org/10.1021/acs.est.0c00579 | |
dc.identifier.citedreference | Li, C., Sonke, J. E., Le Roux, G., Piotrowska, N., Van der Putten, N., Roberts, S. J., et al. ( 2020 ). Unequal anthropogenic enrichment of mercury in Earth’s northern and southern hemispheres. ACS Earth and Space Chemistry, 4 ( 11 ), 2073 - 2081. https://doi.org/10.1021/acsearthspacechem.0c00220 | |
dc.identifier.citedreference | Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., et al. ( 2007 ). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio, 19- 32. https://doi.org/10.1579/0044-7447(2007)36[19:asopau]2.0.co;2. https://www.jstor.org/stable/4315781 | |
dc.identifier.citedreference | Ma, J., Hintelmann, H., Kirk, J. L., & Muir, D. C. ( 2013 ). Mercury concentrations and mercury isotope composition in lake sediment cores from the vicinity of a metal smelting facility in Flin Flon, Manitoba. Chemical Geology, 336, 96 - 102. https://doi.org/10.1016/j.chemgeo.2012.10.037 | |
dc.identifier.citedreference | Mergler, D., Anderson, H. A., Chan, L. H. M., Mahaffey, K. R., Murray, M., Sakamoto, M., & Stern, A. H. ( 2007 ). Methylmercury exposure and health effects in humans: A worldwide concern. AMBIO: A Journal of the Human Environment, 36 ( 1 ), 3 - 11. https://doi.org/10.1579/0044-7447(2007)36[3:MEAHEI]2.0.CO;2 | |
dc.identifier.citedreference | Mulvaney, K. M., Selin, N. E., Giang, A., Muntean, M., Li, C. T., Zhang, D., et al. ( 2020 ). Mercury benefits of climate policy in China: Addressing the Paris agreement and the Minamata convention simultaneously. Environmental Science and Technology, 54, 1326 - 1335. https://doi.org/10.1021/acs.est.9b06741 | |
dc.identifier.citedreference | Percival, J. B., & Outridge, P. M. ( 2013 ). A test of the stability of Cd, Cu, Hg, Pb and Zn profiles over two decades in lake sediments near the Flin Flon Smelter, Manitoba, Canada. The Science of the Total Environment, 454, 307 - 318. https://doi.org/10.1016/j.scitotenv.2013.03.011 | |
dc.identifier.citedreference | Ren, L., Arkin, P., Smith, T. M., & Shen, S. S. ( 2013 ). Global precipitation trends in 1900- 2005 from a reconstruction and coupled model simulations. Journal of Geophysical Research: Atmospheres, 118 ( 4 ), 1679 - 1689. https://doi.org/10.1002/jgrd.50212 | |
dc.identifier.citedreference | Renedo, M., Amouroux, D., Duval, B., Carravieri, A., Tessier, E., Barre, J., et al. ( 2018 ). Seabird tissues as efficient biomonitoring tools for Hg isotopic investigations: Implications of using blood and feathers from chicks and adults. Environmental Science and Technology, 52 ( 7 ), 4227 - 4234. https://doi.org/10.1021/acs.est.8b00422 | |
dc.identifier.citedreference | Renedo, M., Pedrero, Z., Amouroux, D., Cherel, Y., & Bustamante, P. ( 2021 ). Mercury isotopes of key tissues document mercury metabolic processes in seabirds. Chemosphere, 263, 127777. https://doi.org/10.1016/j.chemosphere.2020.127777 | |
dc.identifier.citedreference | Rydberg, J., Gälman, V., Renberg, I., Bindler, R., Lambertsson, L., & MartÃnez- Cortizas, A. ( 2008 ). Assessing the stability of mercury and methylmercury in a varved lake sediment deposit. Environmental Science and Technology, 42 ( 12 ), 4391 - 4396. https://doi.org/10.1021/es7031955 | |
dc.identifier.citedreference | Selin, N. E. ( 2009 ). Global biogeochemical cycling of mercury: A review. Annual Review of Environment and Resources, 34, 43 - 63. https://doi.org/10.1146/annurev.environ.051308.084314 | |
dc.identifier.citedreference | Song, W., Li, A., Ford, J. C., Sturchio, N. C., Rockne, K. J., Buckley, D. R., & Mills, W. J. ( 2005 ). Polybrominated diphenyl ethers in the sediments of the Great Lakes. 2. Lakes Michigan and Huron. Environmental Science and Technology, 39 ( 10 ), 3474 - 3479. https://doi.org/10.1021/es048291p | |
dc.identifier.citedreference | Streets, D. G., Horowitz, H. M., Jacob, D. J., Lu, Z., Levin, L., Ter Schure, A. F., & Sunderland, E. M. ( 2017 ). Total mercury released to the environment by human activities. Environmental Science and Technology, 51 ( 11 ), 5969 - 5977. https://doi.org/10.1021/acs.est.7b00451 | |
dc.identifier.citedreference | Sun, R., Sonke, J. E., HeimbuÌ rger, L. E., Belkin, H. E., Liu, G., Shome, D., et al. ( 2014 ). Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions. Environmental Science and Technology, 48 ( 13 ), 7660 - 7668. https://doi.org/10.1021/es501208a | |
dc.identifier.citedreference | Sun, R., Streets, D. G., Horowitz, H. M., Amos, H. M., Liu, G., Perrot, V., et al. ( 2016 ). Historical (1850- 2010) mercury stable isotope inventory from anthropogenic sources to the atmosphere. Mercury isotope emission inventory. Elementa: Science of the Anthropocene, 4. https://doi.org/10.12952/journal.elementa.000091 | |
dc.identifier.citedreference | Sunderland, E. M. ( 2007 ). Mercury exposure from domestic and imported estuarine and marine fish in the US seafood market. Environmental Health Perspectives, 115 ( 2 ), 235 - 242. https://doi.org/10.1289/ehp.9377 | |
dc.identifier.citedreference | United Nations Environment Programme (UNEP). ( 2019 ). Minamata convention on mercury - Text and annexes. Retrieved from http://www.mercuryconvention.org/Portals/11/documents/Booklets/COP3-version/Minamata-Convention-booklet-Sep2019-EN.pdf | |
dc.identifier.citedreference | Wasik, J. K. C., Engstrom, D. R., Mitchell, C. P. J., Swain, E. B., Monson, B. A., Balogh, S. J., et al. ( 2015 ). The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland. Journal of Geophysical Research: Biogeosciences, 120 ( 9 ), 1697 - 1715. https://doi.org/10.1002/2015JG002993 | |
dc.identifier.citedreference | Wiederhold, J. G., Cramer, C. J., Daniel, K., Infante, I., Bourdon, B., & Kretzschmar, R. ( 2010 ). Equilibrium mercury isotope fractionation between dissolved Hg (II) species and thiol- bound Hg. Environmental Science and Technology, 44 ( 11 ), 4191 - 4197. https://doi.org/10.1021/es100205t | |
dc.identifier.citedreference | Yin, R., Feng, X., Hurley, J. P., Krabbenhoft, D. P., Lepak, R. F., Kang, S., et al. ( 2016 ). Historical records of mercury stable isotopes in sediments of Tibetan lakes. Scientific Reports, 6: 23332. https://doi.org/10.1038/srep23332 | |
dc.identifier.citedreference | Yin, R., Lepak, R. F., Krabbenhoft, D. P., & Hurley, J. P. ( 2016 ). Sedimentary records of mercury stable isotopes in Lake Michigan. Elementa: Science of the Anthropocene, 4. https://doi.org/10.12952/journal.elementa.000086 | |
dc.identifier.citedreference | Zdanowicz, C. M., Krümmel, E. M., Poulain, A. J., Yumvihoze, E., Chen, J., Štrok, M., et al. ( 2016 ). Historical variations of mercury stable isotope ratios in Arctic glacier firn and ice cores. Global Biogeochemical Cycles, 30 ( 9 ), 1324 - 1347. https://doi.org/10.1002/2016GB005411 | |
dc.identifier.citedreference | Zerkle, A. L., Yin, R., Chen, C., Li, X., Izon, G. J., & Grasby, S. E. ( 2020 ). Anomalous fractionation of mercury isotopes in the Late Archean atmosphere. Nature Communications, 11 ( 1 ), 1 - 9. https://doi.org/10.1038/s41467-020-15495-3 | |
dc.identifier.citedreference | Zhou, J., Obrist, D., Dastoor, A., Jiskra, M., & Ryjkov, A. ( 2021 ). Vegetation uptake of mercury and impacts on global cycling. Nature Reviews Earth & Environment, 2, 1 - 284. https://doi.org/10.1038/s43017-021-00146-y | |
dc.identifier.citedreference | Amos, H. M., Sonke, J. E., Obrist, D., Robins, N., Hagan, N., Horowitz, H. M., et al. ( 2015 ). Observational and constraints on global anthropogenic enrichment of mercury. Environmental Science and Technology, 49 ( 7 ), 4036 - 4047. https://doi.org/10.1021/es5058665 | |
dc.identifier.citedreference | Appleby, P. G. ( 2002 ). Chronostratigraphic techniques in recent sediments. In Tracking environmental change using lake sediments (pp. 171 - 203 ): Springer. | |
dc.identifier.citedreference | Appleby, P. G., & Oldfield, F. ( 1978 ). The calculation of lead- 210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5 ( 1 ), 1 - 8. https://doi.org/10.1016/S0341-8162(78)80002-2 | |
dc.identifier.citedreference | Appleby, P. G., & Oldfield, F. ( 1992 ). Applications of lead- 210 to sedimentation studies. In Uranium- series disequilibrium: Applications to earth, marine, and environmental sciences. ( 2nd ed. ). Clarendon Press. | |
dc.identifier.citedreference | Asmund, G., & Nielsen, S. P. ( 2000 ). Mercury in dated Greenland marine sediments. The Science of the Total Environment, 245 ( 1- 3 ), 61 - 72. https://doi.org/10.1016/S0048-9697(99)00433-7 | |
dc.identifier.citedreference | Baskaran, M. ( 2016 ). Radon: A Tracer for Geological, Geophysical and Geochemical Studies (Vol. 367 ): Springer. | |
dc.identifier.citedreference | Benoit, J. M., Gilmour, C. C., Heyes, A., Mason, R. P., & Miller, C. L. ( 2003 ). Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. ACS Symposium Series, 835, 262 - 297. https://doi.org/10.1021/bk-2003-0835.ch019 | |
dc.identifier.citedreference | Bergquist, B. A., & Blum, J. D. ( 2007 ). Mass- dependent and - independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science, 318 ( 5849 ), 417 - 420. https://doi.org/10.1126/science.1148050 | |
dc.identifier.citedreference | Bergquist, B. A., & Blum, J. D. ( 2009 ). The odds and evens of mercury isotopes: Applications of mass- dependent and mass- independent isotope fractionation. Elements, 5 ( 6 ), 353 - 357. https://doi.org/10.2113/gselements.5.6.353 | |
dc.identifier.citedreference | Bessinger, B. A. ( 2014 ). Use of stable isotopes to identify sources of mercury in sediments: A review and uncertainty analysis. Environmental Forensics, 15 ( 3 ), 265 - 280. https://doi.org/10.1080/15275922.2014.930939 | |
dc.identifier.citedreference | Blaauw, M. ( 2010 ). Methods and code for - classical’age- of radiocarbon sequences. Quaternary Geochronology, 5 ( 5 ), 512 - 518. https://doi.org/10.1016/j.quageo.2010.01.002 | |
dc.identifier.citedreference | Blukacz- Richards, E. A., Visha, A., Graham, M. L., McGoldrick, D. L., de Solla, S. R., Moore, D. J., & Arhonditsis, G. B. ( 2017 ). Mercury levels in herring gulls and fish: 42 years of spatio- temporal trends in the Great Lakes. Chemosphere, 172, 476 - 487. https://doi.org/10.1016/j.chemosphere.2016.12.148 | |
dc.identifier.citedreference | Blum, J. D., & Bergquist, B. A. ( 2007 ). Reporting of variations in the natural isotopic composition of mercury. Analytical and Bioanalytical Chemistry, 388, 353 - 359. https://doi.org/10.1007/s00216-007-1236-9 | |
dc.identifier.citedreference | Blum, J. D., & Johnson, M. W. ( 2017 ). Recent developments in mercury stable isotope analysis. Reviews in Mineralogy and Geochemistry, 82 ( 1 ), 733 - 757. https://doi.org/10.2138/rmg.2017.82.17 | |
dc.identifier.citedreference | Blum, J. D., Sherman, L. S., & Johnson, M. W. ( 2014 ). Mercury isotopes in earth and environmental sciences. Annual Review of Earth and Planetary Sciences, 42, 249 - 269. https://doi.org/10.1146/annurev-earth-050212-124107 | |
dc.identifier.citedreference | Cai, H., & Chen, J. ( 2016 ). Mass- independent fractionation of even mercury isotopes. Science Bulletin, 61 ( 2 ), 116 - 124. https://doi.org/10.1007/s11434-015-0968-8 | |
dc.identifier.citedreference | Chen, J., Hintelmann, H., Feng, X., & Dimock, B. ( 2012 ). Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada. Geochimica et Cosmochimica Acta, 90, 33 - 46. https://doi.org/10.1016/j.gca.2012.05.005 | |
dc.identifier.citedreference | Cheng, I., Zhang, L., Castro, M., & Mao, H. ( 2017 ). Identifying Changes in Source Regions Impacting Speciated Atmospheric Mercury at a Rural Site in the Eastern United States. Journal of the Atmospheric Sciences, 74 ( 9 ), 2937 - 2947. https://doi.org/10.1175/JAS-D-17-0086.1 | |
dc.identifier.citedreference | Cooke, C. A., Hintelmann, H., Ague, J. J., Burger, R., Biester, H., Sachs, J. P., & Engstrom, D. R. ( 2013 ). Use and legacy of mercury in the Andes. Environmental Science and Technology, 47 ( 9 ), 4181 - 4188. https://doi.org/10.1021/es3048027 | |
dc.identifier.citedreference | Cooke, C. A., MartÃnez- Cortizas, A., Bindler, R., & Gustin, M. S. ( 2020 ). Environmental archives of atmospheric Hg deposition - A review. The Science of the Total Environment, 709, 134800. https://doi.org/10.1016/j.scitotenv.2019.134800 ] 134800Refstyled | |
dc.identifier.citedreference | Demers, J. D., Blum, J. D., & Zak, D. R. ( 2013 ). Mercury isotopes in a forested ecosystem: Implications for air- surface exchange dynamics and the global mercury cycle. Global Biogeochemical Cycles, 27 ( 1 ), 222 - 238. https://doi.org/10.1002/gbc.20021 | |
dc.identifier.citedreference | Dommergue, A., Martinerie, P., Courteaud, J., Witrant, E., & Etheridge, D. M. ( 2016 ). A new reconstruction of atmospheric gaseous elemental mercury trend over the last 60 years from Greenland firn records. Atmospheric Environment, 136, 156 - 164. https://doi.org/10.1016/j.atmosenv.2016.04.012 | |
dc.identifier.citedreference | Eakins, J. A., & Morrison, R. T. ( 1978 ). A new procedure for the determination of lead- 210 in lake and marine sediments. The International Journal of Applied Radiation and Isotopes, 29 ( 9- 10 ), 531 - 536. https://doi.org/10.1016/0020-708X(78)90161-8 | |
dc.identifier.citedreference | Engstrom, D. R., Balogh, S. J., & Swain, E. B. ( 2007 ). History of mercury inputs to Minnesota lakes: Influences of watershed disturbance and localized atmospheric deposition. Limnology & Oceanography, 52 ( 6 ), 2467 - 2483. https://doi.org/10.4319/lo.2007.52.6.2467 | |
dc.identifier.citedreference | Engstrom, D. R., Fitzgerald, W. F., Cooke, C. A., Lamborg, C. H., Drevnick, P. E., Swain, E. B., et al. ( 2014 ). Atmospheric Hg emissions from preindustrial gold and silver extraction in the Americas: A reevaluation from lake- sediment archives. Environmental Science and Technology, 48 ( 12 ), 6533 - 6543. https://doi.org/10.1021/es405558e | |
dc.identifier.citedreference | Enrico, M., Le Roux, G., HeimbuÌ rger, L. E., Van Beek, P., Souhaut, M., Chmeleff, J., & Sonke, J. E. ( 2017 ). Holocene atmospheric mercury levels reconstructed from peat bog mercury stable isotopes. Environment Science and Technology, 51 ( 11 ), 5899 - 5906. https://doi.org/10.1021/acs.est.6b05804 | |
dc.identifier.citedreference | Estrade, N., Carignan, J., Sonke, J. E., & Donard, O. F. ( 2009 ). Mercury isotope fractionation during liquid- vapor evaporation experiments. Geochimica et Cosmochimica Acta, 73 ( 10 ), 2693 - 2711. https://doi.org/10.1016/j.gca.2009.01.024 | |
dc.identifier.citedreference | Fitzgerald, W. F., Engstrom, D. R., Lamborg, C. H., Tseng, C. M., Balcom, P. H., & Hammerschmidt, C. R. ( 2005 ). Modern and historic atmospheric mercury fluxes in northern Alaska: Global sources and Arctic depletion. Environmental Science and Technology, 39, 557 - 568. https://doi.org/10.1021/es049128x | |
dc.identifier.citedreference | Fu, X., Marusczak, N., Wang, X., Gheusi, F., & Sonke, J. E. ( 2016 ). Isotopic composition of gaseous elemental mercury in the free troposphere of the Pic du Midi Observatory. France. Environmental Science and Technology, 50 ( 11 ), 5641 - 5650. https://doi.org/10.1021/acs.est.6b00033 | |
dc.identifier.citedreference | Fuller, C. C., van Geen, A., Baskaran, M., & Anima, R. ( 1999 ). Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 137Cs, and 239,240 Pu. Marine Chemistry, 64 ( 1- 2 ), 7 - 27. https://doi.org/10.1016/S0304-4203(98)00081-4 | |
dc.identifier.citedreference | Ghosh, S., Schauble, E. A., Couloume, G. L., Blum, J. D., & Bergquist, B. A. ( 2013 ). Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid- vapor evaporation experiments. Chemical Geology, 336, 5 - 12. https://doi.org/10.1016/j.chemgeo.2012.01.008 | |
dc.identifier.citedreference | Goldberg, E. D. ( 1963 ). Geochronology with 210Pb radioactive dating (Vol. 121, p. 130 ). International Atomic Energy Agency | |
dc.identifier.citedreference | Gray, J. E., Pribil, M. J., Van Metre, P. C., Borrok, D. M., & Thapalia, A. ( 2013 ). Identification of contamination in a lake sediment core using Hg and Pb isotopic compositions, Lake Ballinger, Washington, USA. Applied Geochemistry, 29, 1 - 12. https://doi.org/10.1016/j.apgeochem.2012.12.001 | |
dc.identifier.citedreference | Guédron, S., Amouroux, D., Sabatier, P., Desplanque, C., Develle, A. L., Barre, J., et al. ( 2016 ). A hundred year record of industrial and urban development in French Alps combining Hg accumulation rates and isotope composition in sediment archives from Lake Luitel. Chemical Geology, 431, 10 - 19. https://doi.org/10.1016/j.chemgeo.2016.03.016 | |
dc.identifier.citedreference | Huang, S., Sun, L., Zhou, T., Yuan, D., Du, B., & Sun, X. ( 2018 ). Natural stable isotopic compositions of mercury in aerosols and wet precipitations around a coal- fired power plant in Xiamen, southeast China. Atmospheric Environment, 173, 72 - 80. https://doi.org/10.1016/j.atmosenv.2017.11.003 | |
dc.identifier.citedreference | Jiskra, M., Wiederhold, J. G., Skyllberg, U., Kronberg, R. M., Hajdas, I., & Kretzschmar, R. ( 2015 ). Mercury deposition and reemission pathways in boreal forest soils investigated with Hg isotope signatures. Environmental Science and Technology, 49 ( 12 ), 7188 - 7196. https://doi.org/10.1021/acs.est.5b00742 | |
dc.identifier.citedreference | Jiskra, M., Wiederhold, J. G., Skyllberg, U., Kronberg, R. M., & Kretzschmar, R. ( 2017 ). Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes. Environmental Science: Processes and Impacts, 19 ( 10 ), 1235 - 1248. https://doi.org/10.1039/C7EM00245A | |
dc.identifier.citedreference | Klump, J. V., Edgington, D. N., Sager, P. E., & Robertson, D. M. ( 1997 ). Sedimentary phosphorus cycling and a phosphorus mass balance for the Green Bay (Lake Michigan) ecosystem. Canadian Journal of Fisheries and Aquatic Sciences, 54 ( 1 ), 10 - 26. https://doi.org/10.1139/f96-247 | |
dc.identifier.citedreference | Kurz, A. Y., Blum, J. D., Washburn, S. J., & Baskaran, M. ( 2019 ). Changes in the mercury isotopic composition of sediments from a remote alpine lake in Wyoming, USA. The Science of the Total Environment, 669, 973 - 982. https://doi.org/10.1016/j.scitotenv.2019.03.165 | |
dc.identifier.citedreference | Kwon, S. Y., Blum, J. D., Chirby, M. A., & Chesney, E. J. ( 2013 ). Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments. Environmental Toxicology & Chemistry, 32, 2322 - 2330. https://doi.org/10.1002/etc.2313 | |
dc.identifier.citedreference | Kwon, S. Y., Blum, J. D., Yin, R., Tsui, M. T. K., Yang, Y. H., & Choi, J. W. ( 2020 ). Mercury stable isotopes for monitoring the effectiveness of the Minamata Convention on Mercury. Earth- Science Reviews, 203, 103111. https://doi.org/10.1016/j.earscirev.2020.103111 | |
dc.identifier.citedreference | Lee, C. S., Lutcavage, M. E., Chandler, E., Madigan, D. J., Cerrato, R. M., & Fisher, N. S. ( 2016 ). Declining mercury concentrations in bluefin tuna reflect reduced emissions to the North Atlantic Ocean. Environmental Science and Technology, 50 ( 23 ), 12825 - 12830. https://doi.org/10.1021/acs.est.6b04328 | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.