Show simple item record

Intranasal delivery of allergen in a nanoemulsion adjuvant inhibits allergen- specific reactions in mouse models of allergic airway disease

dc.contributor.authorBaker, James R.
dc.contributor.authorRasky, Andrew J.
dc.contributor.authorLanders, Jeffrey J.
dc.contributor.authorJanczak, Katarzyna W.
dc.contributor.authorTotten, Tiffanie D.
dc.contributor.authorLukacs, Nicholas W.
dc.contributor.authorO’konek, Jessica J.
dc.date.accessioned2021-10-05T15:08:30Z
dc.date.available2022-11-05 11:08:28en
dc.date.available2021-10-05T15:08:30Z
dc.date.issued2021-10
dc.identifier.citationBaker, James R.; Rasky, Andrew J.; Landers, Jeffrey J.; Janczak, Katarzyna W.; Totten, Tiffanie D.; Lukacs, Nicholas W.; O’konek, Jessica J. (2021). "Intranasal delivery of allergen in a nanoemulsion adjuvant inhibits allergen- specific reactions in mouse models of allergic airway disease." Clinical & Experimental Allergy (10): 1361-1373.
dc.identifier.issn0954-7894
dc.identifier.issn1365-2222
dc.identifier.urihttps://hdl.handle.net/2027.42/170274
dc.description.abstractBackgroundAtopic diseases are an increasing problem that involve both immediate hypersensitivity reactions mediated by IgE and unique cellular inflammation. Many forms of specific immunotherapy involve the administration of allergen to suppress allergic immune responses but are focused on IgE- mediated reactions. In contrast, the effect of allergen- specific immunotherapy on allergic inflammation is complex, not entirely consistent and not well understood. We have previously demonstrated the ability of allergen administered in a nanoemulsion (NE) mucosal adjuvant to suppress IgE- mediated allergic responses and protect from allergen challenge in murine food allergy models. This activity was associated with decreases in allergen- specific IL- 10 and reductions in allergic cytokines and increases in regulatory T cells.ObjectiveHere, we extend these studies to using 2 distinct models, the ovalbumin (OVA) and cockroach (CRA) models of allergic airway disease, which are based predominantly on allergic inflammation.MethodsAcute or chronic allergic airway disease was induced in mice using ovalbumin and cockroach allergen models. Mice received three therapeutic immunizations with allergen in NE, and reactivity to airway challenge was determined.ResultsTherapeutic immunization with cockroach or OVA allergen in NE markedly reduced pathology after airway challenge. The 2 models demonstrated protection from allergen challenge- induced pathology that was associated with suppression of Th2- polarized immune responses in the lung. In addition, the reduction in ILC2 numbers in the lungs of allergic mice along with reduction in epithelial cell alarmins, IL- 25 and IL- 33, suggests an overall change in the lung immune environment induced by the NE immunization protocol.Conclusions and Clinical RelevanceThese results demonstrate that suppression of allergic airway inflammation and bronchial hyper- reactivity can be achieved using allergen- specific immunotherapy without significant reductions in allergen- specific IgE and suggest that ILC2 cells may be critical targets for this activity.The ability of intranasal vaccines to modulate allergic immune responses and inflammation in the lung was studied in two distinct models of allergic airway disease. Mice were sensitized to ovalbumin or cockroach allergen and subsequently received three immunizations with allergen in nanoemulsion adjuvant. Nanoemulsion vaccines modulated the allergen- specific cytokine milieu in the lungs to suppress Th2 cytokine production, alarmin expression and recruitment of ILC2s. The immune modulation in the lungs was associated with protection from allergen challenge- induced inflammation and reactivity.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherasthma
dc.subject.otherimmunotherapy
dc.subject.othertolerance induction
dc.subject.otheranimal models
dc.titleIntranasal delivery of allergen in a nanoemulsion adjuvant inhibits allergen- specific reactions in mouse models of allergic airway disease
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170274/1/cea13903.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170274/2/cea13903_am.pdf
dc.identifier.doi10.1111/cea.13903
dc.identifier.sourceClinical & Experimental Allergy
dc.identifier.citedreferenceGalli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature. 2008; 454 ( 7203 ): 445 - 454.
dc.identifier.citedreferenceKim HY, DeKruyff RH, Umetsu DT. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol. 2010; 11 ( 7 ): 577 - 584.
dc.identifier.citedreferenceShamji MH, Durham SR. Mechanisms of immunotherapy to aeroallergens. Clin Exp Allergy. 2011; 41 ( 9 ): 1235 - 1246.
dc.identifier.citedreferenceBarlow JL, Bellosi A, Hardman CS, et al. Innate IL- 13- producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol. 2012; 129 ( 1 ): 191 - 198.e4.
dc.identifier.citedreferenceHalim TY, Hwang YY, Scanlon ST, et al. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat Immunol. 2016; 17 ( 1 ): 57 - 64.
dc.identifier.citedreferenceMikhak Z, Fukui M, Farsidjani A, Medoff BD, Tager AM, Luster AD. Contribution of CCR4 and CCR8 to antigen- specific T(H)2 cell trafficking in allergic pulmonary inflammation. J Allergy Clin Immunol. 2009; 123 ( 1 ): 67 - 73 e3.
dc.identifier.citedreferenceBeck LA, Thaci D, Hamilton JD, et al. Dupilumab treatment in adults with moderate- to- severe atopic dermatitis. N Engl J Med. 2014; 371 ( 2 ): 130 - 139.
dc.identifier.citedreferenceBachert C, Mannent L, Naclerio RM, et al. Effect of subcutaneous dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis: a randomized clinical trial. JAMA. 2016; 315 ( 5 ): 469 - 479.
dc.identifier.citedreferenceGalli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012; 18 ( 5 ): 693 - 704.
dc.identifier.citedreferenceHumbert M, Bousquet J, Bachert C, et al. IgE- Mediated multimorbidities in allergic asthma and the potential for omalizumab therapy. J Allergy Clin Immunol Pract. 2019; 7 ( 5 ): 1418 - 1429.
dc.identifier.citedreferenceMakidon PE, Nigavekar SS, Bielinska AU, et al. Characterization of stability and nasal delivery systems for immunization with nanoemulsion- based vaccines. J Aerosol Med Pulm Drug Deliv. 2010; 23 ( 2 ): 77 - 89.
dc.identifier.citedreferenceMakidon PE, Belyakov IM, Blanco LP, et al. Nanoemulsion mucosal adjuvant uniquely activates cytokine production by nasal ciliated epithelium and induces dendritic cell trafficking. Eur J Immunol. 2012; 42 ( 8 ): 2073 - 2086.
dc.identifier.citedreferenceFarazuddin M, Goel RR, Kline NJ, Landers JJ, O’Konek JJ, Baker JR Jr. Nanoemulsion adjuvant augments retinaldehyde dehydrogenase activity in dendritic cells via myd88 pathway. Front Immunol. 2019; 10: 916.
dc.identifier.citedreferencePalomares O, Martin- Fontecha M, Lauener R, et al. Regulatory T cells and immune regulation of allergic diseases: roles of IL- 10 and TGF- beta. Genes Immun. 2014; 15 ( 8 ): 511 - 520.
dc.identifier.citedreferenceTaylor A, Verhagen J, Blaser K, Akdis M, Akdis CA. Mechanisms of immune suppression by interleukin- 10 and transforming growth factor- beta: the role of T regulatory cells. Immunology. 2006; 117 ( 4 ): 433 - 442.
dc.identifier.citedreferenceSchnyder- Candrian S, Togbe D, Couillin I, et al. Interleukin- 17 is a negative regulator of established allergic asthma. J Exp Med. 2006; 203 ( 12 ): 2715 - 2725.
dc.identifier.citedreferenceMukherjee S, Lindell DM, Berlin AA, et al. IL- 17- induced pulmonary pathogenesis during respiratory viral infection and exacerbation of allergic disease. Am J Pathol. 2011; 179 ( 1 ): 248 - 258.
dc.identifier.citedreferenceNewcomb DC, Peebles RS Jr. Th17- mediated inflammation in asthma. Curr Opin Immunol. 2013; 25 ( 6 ): 755 - 760.
dc.identifier.citedreferenceNoster R, Riedel R, Mashreghi MF, et al. IL- 17 and GM- CSF expression are antagonistically regulated by human T helper cells. Sci Transl Med. 2014; 6 ( 241 ): 241ra80.
dc.identifier.citedreferenceCosmi L, Annunziato F. Group 2 innate lymphoid cells are the earliest recruiters of eosinophils in lungs of patients with allergic asthma. Am J Respir Crit Care Med. 2017; 196 ( 6 ): 666 - 668.
dc.identifier.citedreferenceLeyva- Castillo JM, Galand C, Kam C, et al. Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity. 2019; 50 ( 5 ): 1262 - 1275 e4.
dc.identifier.citedreferenceLi BW, de Bruijn MJ, Tindemans I, et al. T cells are necessary for ILC2 activation in house dust mite- induced allergic airway inflammation in mice. Eur J Immunol. 2016; 46 ( 6 ): 1392 - 1403.
dc.identifier.citedreferenceGurram RK, Zhu J. Orchestration between ILC2s and Th2 cells in shaping type 2 immune responses. Cell Mol Immunol. 2019; 16 ( 3 ): 225 - 235.
dc.identifier.citedreferenceMolofsky AB, Van Gool F, Liang HE, et al. Interleukin- 33 and interferon- gamma counter- regulate group 2 innate lymphoid cell activation during immune perturbation. Immunity. 2015; 43 ( 1 ): 161 - 174.
dc.identifier.citedreferenceLi BWS, de Bruijn MJW, Lukkes M, et al. T cells and ILC2s are major effector cells in influenza- induced exacerbation of allergic airway inflammation in mice. Eur J Immunol. 2019; 49 ( 1 ): 144 - 156.
dc.identifier.citedreferenceStarkey MR, McKenzie AN, Belz GT, Hansbro PM. Pulmonary group 2 innate lymphoid cells: surprises and challenges. Mucosal Immunol. 2019; 12 ( 2 ): 299 - 311.
dc.identifier.citedreferenceMorita H, Kubo T, Ruckert B, et al. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J Allergy Clin Immunol. 2019; 143 ( 6 ): 2190 - 2201.e9.
dc.identifier.citedreferenceWang S, Xia P, Chen Y, et al. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell. 2017; 171 ( 1 ): 201 - 216 e218.
dc.identifier.citedreferencePlatts- Mills TA. The allergy epidemics: 1870- 2010. J Allergy Clin Immunol. 2015; 136 ( 1 ): 3 - 13.
dc.identifier.citedreferenceSicherer SH, Sampson HA. Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol. 2014; 133 ( 2 ): 291 - 307.
dc.identifier.citedreferenceMondoulet L, Dioszeghy V, Vanoirbeek JA, Nemery B, Dupont C, Benhamou PH. Epicutaneous immunotherapy using a new epicutaneous delivery system in mice sensitized to peanuts. Int Arch Allergy Immunol. 2011; 154 ( 4 ): 299 - 309.
dc.identifier.citedreferenceJones SM, Burks AW, Dupont C. State of the art on food allergen immunotherapy: oral, sublingual, and epicutaneous. J Allergy Clin Immunol. 2014; 133 ( 2 ): 318 - 323.
dc.identifier.citedreferenceKeet CA, Frischmeyer- Guerrerio PA, Thyagarajan A, et al. The safety and efficacy of sublingual and oral immunotherapy for milk allergy. J Allergy Clin Immunol. 2012; 129 ( 2 ): 448 - 455.
dc.identifier.citedreferenceBurks AW, Jones SM, Wood RA, et al. Oral immunotherapy for treatment of egg allergy in children. N Engl J Med. 2012; 367 ( 3 ): 233 - 243.
dc.identifier.citedreferencePalisade Group of Clinical Investigators, Vickery BP, Vereda A, et al. AR101 oral immunotherapy for peanut allergy. N Engl J Med. 2018; 379 ( 21 ): 1991 - 2001.
dc.identifier.citedreferenceJimenez- Saiz R, Patil SU. The multifaceted B cell response in allergen immunotherapy. Curr Allergy Asthma Rep. 2018; 18 ( 12 ): 66.
dc.identifier.citedreferenceKulis MD, Patil SU, Wambre E, Vickery BP. Immune mechanisms of oral immunotherapy. J Allergy Clin Immunol. 2018; 141 ( 2 ): 491 - 498.
dc.identifier.citedreferenceRenand A, Shamji MH, Harris KM, et al. Synchronous immune alterations mirror clinical response during allergen immunotherapy. J Allergy Clin Immunol. 2018; 141 ( 5 ): 1750 - 1760 e1.
dc.identifier.citedreferenceVickery BP, Berglund JP, Burk CM, et al. Early oral immunotherapy in peanut- allergic preschool children is safe and highly effective. J Allergy Clin Immunol. 2017; 139 ( 1 ): 173 - 181 e8.
dc.identifier.citedreferenceBoonpiyathad T, Sozener ZC, Satitsuksanoa P, Akdis CA. Immunologic mechanisms in asthma. Semin Immunol. 2019; 46: 101333.
dc.identifier.citedreferenceAgyemang A, Nowak- Wegrzyn A. Food protein- induced enterocolitis syndrome: a comprehensive review. Clin Rev Allergy Immunol. 2019; 57 ( 2 ): 261 - 271.
dc.identifier.citedreferenceKo E, Chehade M. Biological therapies for eosinophilic esophagitis: where do we stand? Clin Rev Allergy Immunol. 2018; 55 ( 2 ): 205 - 216.
dc.identifier.citedreferenceBingemann TA, Sood P, Jarvinen KM. Food protein- induced enterocolitis syndrome. Immunol Allergy Clin North Am. 2018; 38 ( 1 ): 141 - 152.
dc.identifier.citedreferenceRizk P, Rodenas M, De Benedetto A. Allergen immunotherapy and atopic dermatitis: the good, the bad, and the unknown. Curr Allergy Asthma Rep. 2019; 19 ( 12 ): 57.
dc.identifier.citedreferenceHolgate ST. Innate and adaptive immune responses in asthma. Nat Med. 2012; 18 ( 5 ): 673 - 683.
dc.identifier.citedreferenceBieber T. Interleukin- 13: targeting an underestimated cytokine in atopic dermatitis. Allergy. 2020; 75 ( 1 ): 54 - 62.
dc.identifier.citedreferenceBachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS- 24 and LIBERTY NP SINUS- 52): results from two multicentre, randomised, double- blind, placebo- controlled, parallel- group phase 3 trials. Lancet. 2019; 394 ( 10209 ): 1638 - 1650.
dc.identifier.citedreferenceWenzel S, Ford L, Pearlman D, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013; 368 ( 26 ): 2455 - 2466.
dc.identifier.citedreferenceO’Konek JJ, Baker JR Jr. Treatment of allergic disease with nanoemulsion adjuvant vaccines. Allergy. 2020; 75 ( 1 ): 246 - 249.
dc.identifier.citedreferenceO’Konek JJ, Landers JJ, Janczak KW, et al. Nanoemulsion adjuvant- driven redirection of TH2 immunity inhibits allergic reactions in murine models of peanut allergy. J Allergy Clin Immunol. 2018; 141 ( 6 ): 2121 - 2131.
dc.identifier.citedreferenceO’Konek JJ, Landers JJ, Janczak KW, et al. Intranasal nanoemulsion vaccine confers long- lasting immunomodulation and sustained unresponsiveness in a murine model of milk allergy. Allergy. 2020; 75 ( 4 ): 872 - 881.
dc.identifier.citedreferenceMakidon PE, Bielinska AU, Nigavekar SS, et al. Pre- clinical evaluation of a novel nanoemulsion- based hepatitis B mucosal vaccine. PLoS One. 2008; 3 ( 8 ): e2954.
dc.identifier.citedreferenceMyc A, Kukowska- Latallo JF, Bielinska AU, et al. Development of immune response that protects mice from viral pneumonitis after a single intranasal immunization with influenza A virus and nanoemulsion. Vaccine. 2003; 21 ( 25- 26 ): 3801 - 3814.
dc.identifier.citedreferenceDaubeuf F, Frossard N. Acute asthma models to ovalbumin in the mouse. Curr Protoc Mouse Biol. 2013; 3 ( 1 ): 31 - 37.
dc.identifier.citedreferencede Almeida Nagata DE, Demoor T, Ptaschinski C, et al. IL- 27R- mediated regulation of IL- 17 controls the development of respiratory syncytial virus- associated pathogenesis. Am J Pathol. 2014; 184 ( 6 ): 1807 - 1818.
dc.identifier.citedreferenceFonseca W, Rasky AJ, Ptaschinski C, et al. Group 2 innate lymphoid cells (ILC2) are regulated by stem cell factor during chronic asthmatic disease. Mucosal Immunol. 2019; 12 ( 2 ): 445 - 456.
dc.identifier.citedreferenceLindell DM, Morris SB, White MP, et al. A novel inactivated intranasal respiratory syncytial virus vaccine promotes viral clearance without Th2 associated vaccine- enhanced disease. PLoS One. 2011; 6 ( 7 ): e21823.
dc.identifier.citedreferenceBrewer JM, Conacher M, Hunter CA, Mohrs M, Brombacher F, Alexander J. Aluminium hydroxide adjuvant initiates strong antigen- specific Th2 responses in the absence of IL- 4- or IL- 13- mediated signaling. J Immunol. 1999; 163 ( 12 ): 6448 - 6454.
dc.identifier.citedreferencePichavant M, Goya S, Hamelmann E, Gelfand EW, Umetsu DT. Animal models of airway sensitization. Curr Protoc Immunol. 2007; 79 ( 1 ): 15 - 18.
dc.identifier.citedreferenceBerlin AA, Hogaboam CM, Lukacs NW. Inhibition of SCF attenuates peribronchial remodeling in chronic cockroach allergen- induced asthma. Lab Invest. 2006; 86 ( 6 ): 557 - 565.
dc.identifier.citedreferenceCampbell EM, Charo IF, Kunkel SL, et al. Monocyte chemoattractant protein- 1 mediates cockroach allergen- induced bronchial hyperreactivity in normal but not CCR2- /- mice: the role of mast cells. J Immunol. 1999; 163 ( 4 ): 2160 - 2167.
dc.identifier.citedreferenceCampbell EM, Kunkel SL, Strieter RM, Lukacs NW. Temporal role of chemokines in a murine model of cockroach allergen- induced airway hyperreactivity and eosinophilia. J Immunol. 1998; 161 ( 12 ): 7047 - 7053.
dc.identifier.citedreferenceClaudio E, Tassi I, Wang H, Tang W, Ha HL, Siebenlist U. Cutting edge: IL- 25 targets dendritic cells to attract IL- 9- producing T cells in acute allergic lung inflammation. J Immunol. 2015; 195 ( 8 ): 3525 - 3529.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.