Show simple item record

Immunohistochemical expression of PAX8, PAX2, and cytokeratin in melanomas

dc.contributor.authorPlotzke, Jaclyn M.
dc.contributor.authorZhao, Raymond
dc.contributor.authorHrycaj, Steven M.
dc.contributor.authorHarms, Paul W.
dc.contributor.authorMehra, Rohit
dc.contributor.authorChan, May P.
dc.date.accessioned2021-10-05T15:09:50Z
dc.date.available2022-11-05 11:09:45en
dc.date.available2021-10-05T15:09:50Z
dc.date.issued2021-10
dc.identifier.citationPlotzke, Jaclyn M.; Zhao, Raymond; Hrycaj, Steven M.; Harms, Paul W.; Mehra, Rohit; Chan, May P. (2021). "Immunohistochemical expression of PAX8, PAX2, and cytokeratin in melanomas." Journal of Cutaneous Pathology 48(10): 1246-1251.
dc.identifier.issn0303-6987
dc.identifier.issn1600-0560
dc.identifier.urihttps://hdl.handle.net/2027.42/170296
dc.description.abstractBackgroundDeviations from the classic melanocytic immunophenotype in melanoma can present a diagnostic challenge. PAX8 and PAX2 are common markers for renal or Müllerian differentiation. While most PAX8+ or PAX2+ carcinomas are seldom confused with melanoma, some cases may show a more ambiguous immunophenotype, especially when MiTF family altered renal cell carcinoma (MiTF‐RCC) is in the differential diagnosis. Neither PAX8 nor PAX2 expression has been reported in melanoma to date. We aimed to better characterize PAX8, PAX2, and cytokeratin immunoreactivity in a large series of melanomas.MethodsTissue microarrays consisting of 263 melanomas were immunostained for PAX8, PAX2, and cytokeratin and graded by an h‐score.ResultsPAX8 expression was seen in 7.9% of melanomas and was significantly associated with spindle cytomorphology. PAX2 was positive in one (0.4%) melanoma. Cytokeratin positivity was seen in three (1.2%) cases and was associated with metastases.ConclusionsPAX8 is expressed in a subset of melanomas and may be strong/extensive. As PAX8 positivity does not exclude a diagnosis of melanoma, it should be used in conjunction with other immunohistochemical markers, such as cytokeratin and PAX2, when melanoma, MiTF‐RCC, and other PAX8+ tumors are in the differential diagnosis.
dc.publisherWiley Periodicals, Inc.
dc.publisherBlackwell Publishing Ltd.
dc.subject.otherrenal cell carcinoma
dc.subject.othercytokeratin
dc.subject.othermelanoma
dc.subject.otherMiTF
dc.subject.otherPAX2
dc.subject.otherPAX8
dc.titleImmunohistochemical expression of PAX8, PAX2, and cytokeratin in melanomas
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDermatology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170296/1/cup14041_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170296/2/cup14041.pdf
dc.identifier.doi10.1111/cup.14041
dc.identifier.sourceJournal of Cutaneous Pathology
dc.identifier.citedreferenceArgani P, Olgac S, Tickoo SK, et al. Xp11 translocation renal cell carcinoma in adults: expanded clinical, pathologic, and genetic spectrum. Am J Surg Pathol. 2007; 31 ( 8 ): 1149 ‐ 1160.
dc.identifier.citedreferenceRekhtman N, Baine MK, Zou Y, Bishop JA. Immunostains: introduction. Quick Reference Handbook for Surgical Pathologists. Springer International Publishing; 2019.
dc.identifier.citedreferenceMudhar HS, Milman T, Eagle RC Jr, et al. Usefulness of PAX8 immunohistochemistry in adult intraocular tumor diagnosis. Ophthalmology. 2021; 128 ( 5 ): 765 ‐ 778.
dc.identifier.citedreferenceGokden N, Kemp SA, Gokden M. The utility of Pax‐2 as an immunohistochemical marker for renal cell carcinoma in cytopathology. Diagn Cytopathol. 2008; 36 ( 7 ): 473 ‐ 477.
dc.identifier.citedreferencePerera RM, Di Malta C, Ballabio A. MiT/TFE family of transcription factors, lysosomes, and cancer. Annu Rev Cancer Biol. 2019; 3: 203 ‐ 222.
dc.identifier.citedreferenceArgani P, Reuter VE, Zhang L, et al. TFEB‐amplified renal cell carcinomas: an aggressive molecular subset demonstrating variable melanocytic marker expression and morphologic heterogeneity. Am J Surg Pathol. 2016; 40 ( 11 ): 1484 ‐ 1495.
dc.identifier.citedreferenceSaleeb RM, Srigley JR, Sweet J, et al. Melanotic MiT family translocation neoplasms: expanding the clinical and molecular spectrum of this unique entity of tumors. Pathol Res Pract. 2017; 213 ( 11 ): 1412 ‐ 1418.
dc.identifier.citedreferenceRao Q, Shen Q, Xia QY, et al. PSF/SFPQ is a very common gene fusion partner in TFE3 rearrangement‐associated perivascular epithelioid tumors (PEComas) and melanotic Xp11 translocation renal cancers: clinicopathologic, immunohistochemical, and molecular characteristics suggesting classification as a distinct entity. Am J Surg Pathol. 2015; 39 ( 9 ): 1181 ‐ 1196.
dc.identifier.citedreferenceMagers MJ, Udager AM, Mehra R. MiT family translocation‐associated renal cell carcinoma: a contemporary update with emphasis on morphologic, immunophenotypic, and molecular mimics. Arch Pathol Lab Med. 2015; 139 ( 10 ): 1224 ‐ 1233.
dc.identifier.citedreferenceMoch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO classification of tumours of the urinary system and male genital organs‐part A: renal, penile, and testicular tumours. Eur Urol. 2016; 70 ( 1 ): 33 ‐ 34.
dc.identifier.citedreferenceArgani P, Hawkins A, Griffin CA, et al. A distinctive pediatric renal neoplasm characterized by epithelioid morphology, basement membrane production, focal HMB45 immunoreactivity, and t(6;11)(p21.1;q12) chromosome translocation. Am J Surg Pathol. 2001; 158 ( 6 ): 2089 ‐ 2096.
dc.identifier.citedreferenceArgani P, Ladanyi M. Translocation carcinomas of the kidney. Clin Lab Med. 2005; 25 ( 2 ): 363 ‐ 378.
dc.identifier.citedreferenceArgani P, Lui MY, Couturier J, Bouvier R, Fournet JC, Ladanyi M. A novel CLTC‐TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene. 2003; 22 ( 34 ): 5374 ‐ 5378.
dc.identifier.citedreferenceArgani P, Aulmann S, Karanjawala Z, Fraser RB, Ladanyi M, Rodriguez MM. Melanotic Xp11 translocation renal cacners: a distinctive neoplasm with overlapping features of PEComa, carcinoma, and melanoma. Am J Surg Pathol. 2009; 33 ( 4 ): 609 ‐ 619.
dc.identifier.citedreferenceCaliò A, Brunelli M, Segala D, et al. Comprehensive analysis of 34 MiT family translocation renal cell carcinomas and review of the literature: investigating prognostic markers and therapy targets. Pathology. 2020; 52 ( 3 ): 297 ‐ 309.
dc.identifier.citedreferenceSmith NE, Illei PB, Allaf M, et al. T(6;11) renal cell carcinoma (RCC): expanded immunohistochemical profile emphasizing novel RCC markers and report of 10 new genetically confirmed cases. Am J Surg Pathol. 2014; 38 ( 5 ): 604 ‐ 614.
dc.identifier.citedreferenceWang XT, Fang R, Zhang RS, et al. Malignant melanotic Xp11 neoplasms exhibit clinicopathologic spectrum and gene expression profiling akin to alveolar soft part sarcoma: a proposal for reclassification. J Pathol. 2020; 251 ( 4 ): 365 ‐ 377.
dc.identifier.citedreferenceSudour‐Bonnange H, Leroy X, Chauvet MP, Classe M, Robin P, Leblond P. Cutaneous metastases during an aggressive course of Xp11.2 translocation renal cell carcinoma in a teenager. Pediatr Blood Cancer. 2014; 61 ( 9 ): 1698 ‐ 1700.
dc.identifier.citedreferenceGranter SR, Weilbaecher KN, Quigley C, Fletcher CD, Fisher DE. Microphthalmia transcription factor: not a sensitive or specific marker for the diagnosis of desmoplastic melanoma and spindle cell (non‐desmoplastic) melanoma. Am J Dermatopathol. 2001; 23 ( 3 ): 185 ‐ 189.
dc.identifier.citedreferenceArgani P, Hicks J, De Marzo AM, et al. Xp11 translocation renal cell carcinoma (RCC): extended immunohistochemical profile emphasizing novel RCC markers. Am J Surg Pathol. 2010; 34 ( 9 ): 1295 ‐ 1303.
dc.identifier.citedreferenceGupta R, Balzer B, Picken M, Osunkoya A, Shet T, et al. Diagnostic implications of transcription factor Pax 2 protein and transmembrane enzyme complex carbonic anhydrase IX immunoreactivity in adult renal epithelial neoplasms. Am J Surg Pathol. 2009; 33 ( 2 ): 241 ‐ 247.
dc.identifier.citedreferenceYu L, Li J, Xu S, et al. An Xp11.2 translocation renal cell carcinoma with SMARCB1 (INI) inactivation in adult end‐stage renal disease: a case report. Diagn Pathol. 2016; 11 ( 1 ): 98.
dc.identifier.citedreferenceSafadi RA, Bader DH, Abdullah NI, Sughayer MA. Immunohistochemical expression of keratins 6, 7, 8, 14, 16, 18, 19, and MNF‐116 pancytokeratin in primary and metastatic melanoma of the head and neck. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016; 121 ( 5 ): 510 ‐ 519.
dc.identifier.citedreferenceWu A, Kunju LP, Cheng L, Shah RB. Renal cell carcinoma in children and young adults: analysis of clincopathological, immunohistochemical and molecular characteristics with an emphasis on the spectrum of Xp11.2 translocation‐associated and unusual clear cell subtypes. Histopathology. 2008; 53 ( 5 ): 533 ‐ 544.
dc.identifier.citedreferenceArgani P, Laé M, Hutchinson B, et al. Renal carcinomas with the t(6;11)(p21;q12): clinicopathologic features and demonstration of the specific alpha‐TFEB gene fusion by immunohistochemistry, RT‐PCR, and DNA PCR. Am J Surg Pathol. 2005; 29 ( 2 ): 230 ‐ 240.
dc.identifier.citedreferenceAkgul M, Saeed O, Levy D, et al. Morphologic and immunohistochemical characteristics of fluorescent in situ hybridization confirmed TFE3‐gene fusion associated renal cell carcinoma: a single institutional cohort. Am J Surg Pathol. 2020; 44 ( 11 ): 1450 ‐ 1458.
dc.identifier.citedreferenceSharain RF, Gown AM, Greipp PT, Folpe AL. Immunohistochemistry for TFE3 lacks specificity and sensitivity in the diagnosis of TFE3‐rearranged neoplasms: a comparative, 2‐laboratory study. Hum Pathol. 2019; 87: 65 ‐ 74.
dc.identifier.citedreferenceLee HJ, Shin DH, Noh GY, et al. Combination of immunohistochemistry, FISH, and RT‐PCR shows high incidence of Xp11 translocation RCC: comparison of three different diagnostic methods. Oncotarget. 2017; 8 ( 19 ): 30756 ‐ 30765.
dc.identifier.citedreferenceSkala SL, Xiao H, Udager AM, et al. Detection of 6 TFEB‐amplified renal cell carcinomas and 25 renal cell carcinomas with MITF translocations: systematic morphologic analysis of 85 cases evaluated by clinical TFE3 and TFEB FISH assays. Mod Pathol. 2018; 31 ( 1 ): 179 ‐ 197.
dc.identifier.citedreferenceArgani P. MiT family translocation renal cell carcinoma. Semin Diagn Pathol. 2015; 32 ( 2 ): 103 ‐ 113.
dc.identifier.citedreferenceGupta S, Argani P, Jungbluth AA, et al. TFEB expression profiling in renal cell carcinomas: clinicopathologic correlations. Am J Surg Pathol. 2019; 43 ( 11 ): 2019.
dc.identifier.citedreferenceDickson BC, Brooks JS, Pasha TL, Zhang PJ. TFE3 expression in tumors of the microphthalmia associated transcription factor (MiTF) family. Int J Surg Pathol. 2011; 19 ( 1 ): 26 ‐ 30.
dc.identifier.citedreferenceNazarian RM, Prieto VG, Elder DE, Duncan LM. Melanoma biomarker expression in melanocytic tumor progression: a tissue microarray study. J Cutan Pathol. 2010; 37 ( Suppl 1 ): 41 ‐ 47.
dc.identifier.citedreferenceOrdoñez NG. Value of melanocytic‐associated immunohistochemical markers in the diagnosis of malignant melanoma: a review and update. Hum Pathol. 2014; 45 ( 2 ): 191 ‐ 205.
dc.identifier.citedreferenceZarbo RJ, Gown AM, Nagle RB, Visscher DW, Crissman JD. Anomalous cytokeratin expression in malignant melanoma: one‐ and two‐dimensional western blot analysis and immunohistochemical survey of 100 melanomas. Mod Pathol. 1990; 3 ( 4 ): 494 ‐ 501.
dc.identifier.citedreferenceRomano RC, Carter JM, Folpe AL. Aberrant intermediate filament and synaptophysin expression is a frequent event in malignant melanoma: an immunohistochemical study of 73 cases. Mod Pathol. 2015; 28 ( 8 ): 1033 ‐ 1042.
dc.identifier.citedreferenceBen‐Izhak O, Stark P, Levy R, Bergman R, Lichtig C. Epithelial markers in malignant melanoma. A study of primary lesions and their metastases. Am J Dermatopathol. 1994; 16 ( 3 ): 241 ‐ 246.
dc.identifier.citedreferencePlaza JA, Suster D, Perez‐Montiel D. Expression of immunohistochemical markers in primary and metastatic malignant melanoma: a comparative study in 70 patients using a tissue microarray technique. Appl Immunohistochem Mol Morphol. 2007; 15 ( 4 ): 421 ‐ 425.
dc.identifier.citedreferenceSmith SM, Schmitt AC, Carrau RL, Iwenofu OH. Primary sinonasal mucosal melanoma with aberrant diffuse and strong desmin reactivity: a potential diagnostic pitfall! Head Neck Pathol. 2015; 9 ( 1 ): 165 ‐ 171.
dc.identifier.citedreferenceLefferts JA, Loehrer AP, Yan S, Green DC, Deharvengt SJ, LeBlanc RE. CD10 and p63 expression in a sarcomatoid undifferentiated melanoma: a cautionary (and molecularly annotated) tale. J Cutan Pathol. 2020; 47 ( 6 ): 541 ‐ 547.
dc.identifier.citedreferenceSteppert C, Krugmann J, Sterlacci W. Simultaneous endocrine expression and loss of melanoma markers in malignant melanoma metastases, a retrospective analysis. Pathol Oncol Res. 2020; 26 ( 3 ): 1777 ‐ 1779.
dc.identifier.citedreferenceChang O, Argenyi Z. Loss of conventional melanocytic markers in malignant melanoma and lymph node metastasis; an uncommon but dangerous pitfall. Am J Dermatopathol. 2017; 39 ( 10 ): 760 ‐ 763.
dc.identifier.citedreferenceAgaimy A, Specht K, Stoehr R, et al. Metastatic malignant melanoma with complete loss of differentiation markers (undifferentiated/dedifferentiated melanoma): analysis of 14 patients emphasizing phenotypic plasticity and the value of molecular testing as surrogate diagnostic marker. Am J Surg Pathol. 2016; 40 ( 2 ): 181 ‐ 191.
dc.identifier.citedreferenceAlrabadi N, Gibson N, Curless K, et al. Detection of driver mutations in BRAF can aid in diagnosis and early treatment of dedifferentiated metastatic melanoma. Mod Pathol. 2019; 32 ( 3 ): 330 ‐ 337.
dc.identifier.citedreferenceSong Y, Karakousis GC. Melanoma of unknown primary. J Surg Oncol. 2019; 119 ( 2 ): 232 ‐ 241.
dc.identifier.citedreferenceTacha D, Zhou D, Cheng L. Expression of PAX8 in normal and neoplastic tissues: a comprehensive immunohistochemical study. Appl Immunohistochem Mol Morphol. 2011; 19 ( 4 ): 293 ‐ 299.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.