Pacific Northwest Plants Record Multiannual Atmosphere–Ocean Circulation Patterns
dc.contributor.author | Stein, Rebekah A. | |
dc.contributor.author | Sheldon, Nathan D. | |
dc.contributor.author | Smith, Selena Y. | |
dc.date.accessioned | 2021-11-02T00:44:38Z | |
dc.date.available | 2022-11-01 20:44:36 | en |
dc.date.available | 2021-11-02T00:44:38Z | |
dc.date.issued | 2021-10 | |
dc.identifier.citation | Stein, Rebekah A.; Sheldon, Nathan D.; Smith, Selena Y. (2021). "Pacific Northwest Plants Record Multiannual Atmosphere–Ocean Circulation Patterns." Journal of Geophysical Research: Atmospheres 126(19): n/a-n/a. | |
dc.identifier.issn | 2169-897X | |
dc.identifier.issn | 2169-8996 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/170788 | |
dc.description.abstract | Carbon isotope ecology can be used as a measure of plant water stress. Plant water stress is complicated: multiple factors (e.g., evapotranspiration rates, temperature, precipitation, soil texture, and available water) control the magnitude of the isotopic expression. Often, large ocean–atmosphere pressure systems result in the convergence of constructive climate parameters that result in increased plant water stress; for example, El Niño and Pacific Decadal Oscillation (PDO) anomaly phases. We examined the biogeochemistry of three species (Thuja plicata: with a Pacific coastal habitat, Thuja occidentalis: native to the Great Lakes region, and Populus tremuloides: a cosmopolitan species found throughout North America). Coincident analyses of these species allowed for intercomparison between plants in habitats directly impacted by atmospheric–oceanic controls on water availability and those out of Pacific impact range. There are oscillatory patterns in the carbon isotope discrimination values (Δ13Cleaf) of Thuja plicata, but no clear patterns in Δ13Cleaf values of the other species. We compare the pattern in isotope discrimination of T. plicata with Pacific‐driven multiannual environmental phenomena to determine whether these patterns could be related to the oscillation in Δ13Cleaf values. The data demonstrate a regular and significant 14‐ to 19‐year periodicity, aligning most closely with PDO climate patterns. Thuja plicata likely records prolonged stress, like plant available water shortages, which coincide with PDO‐associated shifts in precipitation, humidity, and evapotranspiration. These findings demonstrate that coastal Pacific ecosystems are vulnerable to changes in water availability connected to Pacific teleconnections, providing a new recording tool to examine multiannual climate anomalies.Plain Language SummaryPlants respond to changes in the environment; these changes are recorded in plant chemistry. In this study, we examine how stresses from the Pacific environment, which ultimately control multiple aspects of the environment, affect leaf chemistry of a Pacific coastal tree whose habitat is dominated by Pacific influence. We compare these results to the chemistry of a tree native to the upper Midwest of North America, which is largely uninfluenced by the aspects of Pacific weather and climate, and a tree living throughout North America, with some local specimens influenced by the Pacific, while others too far from the ocean. We find that trees along the coast of the Pacific record anomalies in Pacific air and water conditions, while the other studied trees do not. This is important when we consider how the Pacific Ocean can impact life on land, especially in the context of a warming ocean.Key PointsCarbon isotope values of plants on the Pacific coast record multidecadal Pacific teleconnectionsCarbon isotope values of plants in the North American interior do not record periodicity associated with Pacific teleconnectionsThese isotope biogeochemistry findings follow prior work linking aboveground terrestrial plants to oceanic–atmospheric teleconnections | |
dc.publisher | InTech | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | carbon | |
dc.subject.other | isotopes | |
dc.subject.other | plants | |
dc.subject.other | decadal | |
dc.subject.other | Pacific | |
dc.subject.other | discrimination | |
dc.title | Pacific Northwest Plants Record Multiannual Atmosphere–Ocean Circulation Patterns | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Atmospheric and Oceanic Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/170788/1/jgrd57347_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/170788/2/jgrd57347.pdf | |
dc.identifier.doi | 10.1029/2021JD035454 | |
dc.identifier.source | Journal of Geophysical Research: Atmospheres | |
dc.identifier.citedreference | Rodionov, S. N., Bond, N. A., & Overland, J. E. ( 2007 ). The Aleutian Low, storm tracks, and winter climate variability in the Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 54 ( 23–26 ), 2560 – 2577. https://doi.org/10.1016/j.dsr2.2007.08.002 | |
dc.identifier.citedreference | Stein, R. A., Sheldon, N. D., & Smith, S. Y. ( 2021b ). Soil carbon isotope values and paleo‐precipitation reconstruction. Paleoceanography and Paleoclimatology, 36, e2020PA004158. | |
dc.identifier.citedreference | Stoop, J. M. H., Williamson, J. D., & Pharr, D. M. ( 1996 ). Mannitol metabolism in plants: A method for coping with stress. Trends in Plant Science, 1 ( 5 ), 139 – 144. https://doi.org/10.1016/s1360-1385(96)80048-3 | |
dc.identifier.citedreference | Swanson, C. A. ( 1957 ). Translocation in Trees. Ohio Journal of Science, 57 ( 6 ), 331. | |
dc.identifier.citedreference | Taylor, A. H., Trouet, V., & Skinner, C. N. ( 2008 ). Climatic influences on fire regimes in montane forests of the southern Cascades, California, USA. International Journal of Wildland Fire, 17 ( 1 ), 60 – 71. https://doi.org/10.1071/wf07033 | |
dc.identifier.citedreference | The Global SPEI Database v2.6. ( 2018 ). Retrieved from https://spei.csic.es/database.html | |
dc.identifier.citedreference | Thompson, R. S., & Anderson, K. H. ( 2000 ). Biomes of western North America at 18,000, 6000 and 0 14 C yr BP reconstructed from pollen and packrat midden data. Journal of Biogeography, 27 ( 3 ), 555 – 584. https://doi.org/10.1046/j.1365-2699.2000.00427.x | |
dc.identifier.citedreference | Toggweiler, J. R., & Russell, J. ( 2008 ). Ocean circulation in a warming climate. Nature, 451 ( 7176 ), 286 – 288. https://doi.org/10.1038/nature06590 | |
dc.identifier.citedreference | Trouet, V., Taylor, A. H., Carleton, A. M., & Skinner, C. N. ( 2006 ). Fire‐climate interactions in forests of the American Pacific coast. Geophysical Research Letters, 33 ( 18 ), L18704. https://doi.org/10.1029/2006gl027502 | |
dc.identifier.citedreference | Tucker, C. S., & Pearl, J. K. ( 2021 ). Coastal tree‐ring records for paleoclimate and paleoenvironmental applications in North America. Quaternary Science Reviews, 265, 107044. https://doi.org/10.1016/j.quascirev.2021.107044 | |
dc.identifier.citedreference | United States Department of Agriculture (USDA), Natural Resources Conservation Service. ( 2002a ). Quaking Aspen, Populus tremuloides Michx. (1‐4). | |
dc.identifier.citedreference | United States Department of Agriculture (USDA), Natural Resources Conservation Service. ( 2002b ). Thuja occidentalis L. | |
dc.identifier.citedreference | United States Department of Agriculture (USDA), Natural Resources Conservation Service. ( 2002c ). Thuja plicata Donn ex. D. Don. | |
dc.identifier.citedreference | US Census Bureau. ( 2010 ). Coastline population trends in the United States: 1960 to 2008. Retrieved from https://www.census.gov/prod/2010pubs/p25-1139.pdf | |
dc.identifier.citedreference | Van Rudloff, E., Lapp, M. S., & Yeh, F. C. ( 1988 ). Chemosystematic study of Thuja plicata: Multivariate analysis of leaf oil terpene composition. Biochemical Systematics and Ecology, 16, 119 – 125. | |
dc.identifier.citedreference | Vicente‐Serrano, S. M., & Beguería, S. ( 2016 ). Comment on ‘Candidate distributions for climatological drought indices (SPI and SPEI)’by James H. Stagge et al. International Journal of Climatology, 36 ( 4 ), 2120 – 2131. | |
dc.identifier.citedreference | Vicente‐Serrano, S. M., Beguería, S., & López‐Moreno, J. I. ( 2010 ). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23 ( 7 ), 1696 – 1718. https://doi.org/10.1175/2009jcli2909.1 | |
dc.identifier.citedreference | Wara, M. W., Ravelo, A. C., & Delaney, M. L. ( 2005 ). Permanent El Niño‐like conditions during the Pliocene warm period. Science, 309 ( 5735 ), 758 – 761. https://doi.org/10.1126/science.1112596 | |
dc.identifier.citedreference | White, J. W. C., Vaughn, B. H., & Michel, S. E. ( 2015 ). Alpine Research (INSTAAR), stable isotopic composition of atmospheric carbon dioxide (13C and 18O) from the NOAA ESRL carbon cycle cooperative global air sampling network, 1990–2014 Version 2015‐10‐26. University of Colorado, Institute of Arctic. Retrieved from //aftp.cmdl.noaa.gov/data/trace_gases/co2c13/flask/surface/README_surface_flask_co2c13.html | |
dc.identifier.citedreference | Woods, D. B., & Turner, N. C. ( 1971 ). Stomatal response to changing light by four tree species of varying shade tolerance. New Phytologist, 70, 77 – 84. https://doi.org/10.1111/j.1469-8137.1971.tb02512.x | |
dc.identifier.citedreference | Yeh, F. C. ( 1988 ). Isozyme variation of Thuja plicata (Cupressaceae) in British Columbia. Biochemical Systematics and Ecology, 16, 373 – 377. https://doi.org/10.1016/0305-1978(88)90028-2 | |
dc.identifier.citedreference | Keeling, R. ( 2021 ). Carbon dioxide measurements. Scripps CO2 Program. Retrieved from https://scrippsco2.ucsd.edu/ | |
dc.identifier.citedreference | National Oceanic and Atmospheric Administration. ( 2001 ). NOAA’s climate prediction center. Retrieved from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php | |
dc.identifier.citedreference | PRISM Climate Group. ( 2004 ). Time series values for individual locations. Oregon State University. Retrieved from http://prism.oregonstate.edu | |
dc.identifier.citedreference | Tans, P. ( 2021 ). Trends in atmospheric carbon dioxide. NOAA Global Monitoring Laboratory, Earth System Research Laboratory. Retrieved from https://www.esrl.noaa.gov/gmd/ccgg/trends/ | |
dc.identifier.citedreference | Akıncı, Ş., & Lösel, D. M. ( 2012 ). Plant water‐stress response mechanisms. In I. M. M. Rahman, & H. Hasegawa (Eds.), Water stress (pp. 15 – 42 ). InTech. | |
dc.identifier.citedreference | Anderson, L. ( 2012 ). Rocky mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American Monsoon. Global and Planetary Change, 92, 198 – 208. https://doi.org/10.1016/j.gloplacha.2012.05.012 | |
dc.identifier.citedreference | Antos, J. A., Filipescu, C. N., & Negrave, R. W. ( 2016 ). Ecology of western redcedar ( Thuja plicata ): Implications for management of a high‐value multiple‐use resource. Forest Ecology and Management, 375, 211 – 222. https://doi.org/10.1016/j.foreco.2016.05.043 | |
dc.identifier.citedreference | Arens, N. C., Jahren, A. H., & Amundson, R. ( 2000 ). Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology, 26 ( 1 ), 137 – 164. https://doi.org/10.1666/0094-8373(2000)026<0137:ccpfrt>2.0.co;2 | |
dc.identifier.citedreference | Ari, T. B., Gershunov, A., Tristan, R., Cazelles, B., Gage, K., & Stenseth, N. C. ( 2010 ). Interannual variability of human plague occurrence in the western United States explained by Tropical and North Pacific Ocean climate variability. The American Journal of Tropical Medicine and Hygiene, 83 ( 3 ), 624 – 632. https://doi.org/10.4269/ajtmh.2010.09-0775 | |
dc.identifier.citedreference | Beguería, S., Vicente‐Serrano, S. M., & Angulo‐Martínez, M. ( 2010 ). A multiscalar global drought dataset: The SPEIbase: A new gridded product for the analysis of drought variability and impacts. Bulletin of the American Meteorological Society, 91 ( 10 ), 1351 – 1354. https://doi.org/10.1175/2010bams2988.1 | |
dc.identifier.citedreference | Berkelhammer, M. ( 2019 ). Synchronous modes of terrestrial and marine productivity in the North Pacific. Frontiers of Earth Science, 7, 73. https://doi.org/10.3389/feart.2019.00073 | |
dc.identifier.citedreference | Bower, R. C., & Dunsworth, B. G. ( 1987 ). Provenance test of western red cedar on Vancouver Island. In N. J. Smith (Ed.), Western red cedar—Does it have a future? Proceedings of a conference, Vancouver (pp. 131 – 135 ). University of British Columbia Press. | |
dc.identifier.citedreference | Box, G. E., & Tiao, G. C. ( 1975 ). Intervention analysis with applications to economic and environmental problems. Journal of the American Statistical Association, 70 ( 349 ), 70 – 79. https://doi.org/10.1080/01621459.1975.10480264 | |
dc.identifier.citedreference | Boyd, R. J. ( 1965 ). Western redcedar ( Thuja plicata Donn). In Silvics of forest trees of the United States (pp. 686 – 691 ). H. A. Fowells, comp. U.S. Department of Agriculture. Agriculture Handbook 271 | |
dc.identifier.citedreference | Bumbaco, K. A., & Mote, P. W. ( 2010 ). Three recent flavors of drought in the Pacific Northwest. Journal of Applied Meteorology and Climatology, 49 ( 9 ), 2058 – 2068. https://doi.org/10.1175/2010jamc2423.1 | |
dc.identifier.citedreference | Candolfi‐Vasconcelos, M. C., Candolfi, M. P., & Kohlet, W. ( 1994 ). Retranslocation of carbon reserves from the woody storage tissues into the fruit as a response to defoliation stress during the ripening period in Vitis vinifera L. Planta, 192 ( 4 ), 567 – 573. https://doi.org/10.1007/bf00203595 | |
dc.identifier.citedreference | Castello, A. F., & Shelton, M. L. ( 2004 ). Winter precipitation on the US Pacific coast and El Nino–Southern Oscillation events. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24 ( 4 ), 481 – 497. https://doi.org/10.1002/joc.1011 | |
dc.identifier.citedreference | Cayan, D. R., Das, T., Pierce, D. W., Barnett, T. P., Tyree, M., & Gershunov, A. ( 2010 ). Future dryness in the southwest US and the hydrology of the early 21st century drought. Proceedings of the National Academy of Sciences, 107 ( 50 ), 21271 – 21276. https://doi.org/10.1073/pnas.0912391107 | |
dc.identifier.citedreference | Ceballos, L. I., Di Lorenzo, E., Hoyos, C. D., Schneider, N., & Taguchi, B. ( 2009 ). North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. Journal of Climate, 22 ( 19 ), 5163 – 5174. https://doi.org/10.1175/2009jcli2848.1 | |
dc.identifier.citedreference | Chabot, B. F., & Hicks, D. J. ( 1982 ). The ecology of leaf life spans. Annual Review of Ecology and Systematics, 13 ( 1 ), 229 – 259. https://doi.org/10.1146/annurev.es.13.110182.001305 | |
dc.identifier.citedreference | Chaouche, K., Neppel, L., Dieulin, C., Pujol, N., Ladouche, B., Martin, E., et al. ( 2010 ). Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change. Comptes Rendus Geoscience, 342 ( 3 ), 234 – 243. https://doi.org/10.1016/j.crte.2010.02.001 | |
dc.identifier.citedreference | Climate Impacts Group. ( 2020 ). Climate impacts in brief. Retrieved from https://cig.uw.edu/learn/climate-impacts-in-brief/ | |
dc.identifier.citedreference | Conifer Specialist Group. ( 1998 ). Pinus torreyana var. torreyana. IUCN Red List of Threatened Species. Listed as endangered (EN C2b). | |
dc.identifier.citedreference | Copes, D. L. ( 1981 ). Isoenzyme uniformity in western redcedar seedlings from Oregon and Washington. Canadian Journal of Forest Research, 11 ( 2 ), 451 – 453. https://doi.org/10.1139/x81-060 | |
dc.identifier.citedreference | Cotton, J. M., Sheldon, N. D., & Strömberg, C. A. ( 2012 ). High‐resolution isotopic record of C4 photosynthesis in a Miocene grassland. Palaeogeography, Palaeoclimatology, Palaeoecology, 337, 88 – 98. https://doi.org/10.1016/j.palaeo.2012.03.035 | |
dc.identifier.citedreference | D’Arrigo, R., Mashig, E., Frank, D., Wilson, R., & Jacoby, G. ( 2005 ). Temperature variability over the past millennium inferred from Northwestern Alaska tree rings. Climate Dynamics, 24 ( 2 ), 227 – 236. | |
dc.identifier.citedreference | Davies, W. J., & Kozlowski, T. T. ( 1975 ). Stomatal responses to changes in light intensity as influenced by plant water stress. Forest Science, 21 ( 33 ), 129 – 131 | |
dc.identifier.citedreference | Diaz, H. F., Hoerling, M. P., & Eischeid, J. K. ( 2001 ). ENSO variability, teleconnections and climate change. International Journal of Climatology: A Journal of the Royal Meteorological Society, 21 ( 15 ), 1845 – 1862. https://doi.org/10.1002/joc.631 | |
dc.identifier.citedreference | Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., & Freeman, K. H. ( 2010 ). Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences, 107 ( 13 ), 5738 – 5743. https://doi.org/10.1073/pnas.0910513107 | |
dc.identifier.citedreference | Di Liberto, T. ( 2021 ). Astounding heat obliterates all‐time records across the Pacific Northwest and Western Canada in June 2021: NOAA Climate.gov. Retrieved from https://climate.gov/news-features/event-tracker/astounding-heat-obliterates-all-time-records-across-pacific-northwest | |
dc.identifier.citedreference | Di Lorenzo, E., Schneider, N., Cobb, K. M., Franks, P. J. S., Chhak, K., Miller, A. J., et al. ( 2008 ). North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophysical Research Letters, 35 ( 8 ). https://doi.org/10.1029/2007gl032838 | |
dc.identifier.citedreference | Enloe. ( 2020 ). Pacific decadal oscillation (PDO). Retrieved from https://www.ncdc.noaa.gov/teleconnections/pdo/ | |
dc.identifier.citedreference | Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J. M., & Morgan, V. I. ( 1998 ). Historical CO 2 records from the Law Dome DE08, DE08‐2, and DSS ice cores. In Trends: A compendium of data on global change (pp. 351 – 364 ). | |
dc.identifier.citedreference | Eyre, F. H. (Ed.). ( 1980 ). Forest cover types of the United States and Canada (p. 148 ). Society of American Foresters. | |
dc.identifier.citedreference | Fan, S., Grossnickle, S. C., & Russell, J. H. ( 2008 ). Morphological and physiological variation in western redcedar ( Thuja plicata ) populations under contrasting soil water conditions. Trees, 22 ( 5 ), 671 – 683. https://doi.org/10.1007/s00468-008-0225-8 | |
dc.identifier.citedreference | Farge, M. ( 1992 ). Wavelet transforms and their applications to turbulence. Annual Review of Fluid Mechanics, 24 ( 1 ), 395 – 458. https://doi.org/10.1146/annurev.fl.24.010192.002143 | |
dc.identifier.citedreference | Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. ( 1989 ). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology, 40 ( 1 ), 503 – 537. https://doi.org/10.1146/annurev.pp.40.060189.002443 | |
dc.identifier.citedreference | Feng, S., Trnka, M., Hayes, M., & Zhang, Y. ( 2017 ). Why do different drought indices show distinct future drought risk outcomes in the US Great Plains? Journal of Climate, 30 ( 1 ), 265 – 278. https://doi.org/10.1175/jcli-d-15-0590.1 | |
dc.identifier.citedreference | Fowler, A. M., Boswijk, G., Gergis, J., & Lorrey, A. ( 2008 ). ENSO history recorded in Agathis australis (kauri) tree rings. Part A: Kauri’s potential as an ENSO proxy. International Journal of Climatology: A Journal of the Royal Meteorological Society, 28 ( 1 ), 1 – 20. | |
dc.identifier.citedreference | Fox, R. A. ( 2014 ). Seasonal and diurnal patterns of whole‐tree plant water relations in three Pacific Northwest conifer species: Thuja plicata, Pseudotsuga menziesii, and Tsuga heterophylla (Doctoral dissertation). University of Washington. | |
dc.identifier.citedreference | Franklin, J. F., & Dyrness, C. T. ( 1973 ). Natural vegetation of Oregon and Washington (General Technical Report PNW‐8, pp. 1 – 417 ). USDA Forest Service, Pacific Northwest Forest and Range Experiment Station. | |
dc.identifier.citedreference | Gedalof, Z. E., & Smith, D. J. ( 2001 ). Interdecadal climate variability and regime‐scale shifts in Pacific North America. Geophysical Research Letters, 28 ( 8 ), 1515 – 1518. https://doi.org/10.1029/2000gl011779 | |
dc.identifier.citedreference | Griffin, J. R., & Critchfield, W. B. ( 1972 ). The distribution of forest trees in California. USDA Forest Service. Research Paper PSW‐82. | |
dc.identifier.citedreference | Guan, B. T., Wright, W. E., Chung, C. H., & Chang, S. T. ( 2012 ). ENSO and PDO strongly influence Taiwan spruce height growth. Forest Ecology and Management, 267, 50 – 57. https://doi.org/10.1016/j.foreco.2011.11.028 | |
dc.identifier.citedreference | Hammer, Ø., Harper, D. A. T., & Ryan, P. D. ( 2008 ). Seltene Erkrankungen—Einführung zum Thema. PAST‐Palaeontological Statistic, 1, 77. https://doi.org/10.1055/s-2008-1027443 | |
dc.identifier.citedreference | Hare, S. R. ( 1996 ). Low frequency climate variability and salmon production. University of Washington. | |
dc.identifier.citedreference | Hare, S. R., & Francis, R. C. ( 1995 ). Climate change and salmon production in the northeast Pacific Ocean (pp. 357 – 372 ). Canadian Special Publication of Fisheries and Aquatic Sciences. | |
dc.identifier.citedreference | Harley, G. L., Maxwell, R. S., Black, B. A., & Bekker, M. F. ( 2020 ). A multi‐century, tree‐ring‐derived perspective of the North Cascades (USA) 2014–2016 snow drought. Climatic Change, 162 ( 1 ), 127 – 143. https://doi.org/10.1007/s10584-020-02719-0 | |
dc.identifier.citedreference | Heinselman, M. L. ( 1970 ). Landscape evolution, peatland types and the environment in the Lake Agassiz Peatlands Natural Area, Minnesota. Ecological Monographs, 40 ( 2 ), 235 – 261. https://doi.org/10.2307/1942297 | |
dc.identifier.citedreference | Henley, B. J. ( 2017 ). Pacific decadal climate variability: Indices, patterns and tropical‐extratropical interactions. Global and Planetary Change, 155, 42 – 55. https://doi.org/10.1016/j.gloplacha.2017.06.004 | |
dc.identifier.citedreference | Hessl, A. E., McKenzie, D., & Schellhaas, R. ( 2004 ). Drought and Pacific decadal oscillation linked to fire occurrence in the inland Pacific Northwest. Ecological Applications, 14 ( 2 ), 425 – 442. https://doi.org/10.1890/03-5019 | |
dc.identifier.citedreference | Ho, L. C. ( 1979 ). Regulation of assimilate translocation between leaves and fruits in the tomato. Annals of Botany, 43 ( 4 ), 437 – 448. https://doi.org/10.1093/oxfordjournals.aob.a085654 | |
dc.identifier.citedreference | Hunter, T., Tootle, G., & Piechota, T. ( 2006 ). Oceanic‐atmospheric variability and western US snowfall. Geophysical Research Letters, 33 ( 13 ). https://doi.org/10.1029/2006gl026600 | |
dc.identifier.citedreference | Johnston, W. F. ( 1990 ). Thuja occidentalis L. northern white‐cedar. In R. M. Burns, & B. H. Honkala (Eds.), Technical coordinators. Silvics of North America. Volume 1. Conifers. Agric. Handb. 654 (pp. 580 – 589 ). U.S. Department of Agriculture, Forest Service. | |
dc.identifier.citedreference | Jones, J. R. & Schier, G. A. ( 1985 ). Growth. In DeByle, N. V., & Winokur, R. P., (Eds.), Aspen: Ecology and management in the western United States. Gen. Tech. Rep. RM‐119. U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 19 – 24. | |
dc.identifier.citedreference | Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P., Heimann, M., & Meijer, H. A. ( 2001 ). Exchanges of atmospheric CO 2 and 13 CO 2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects. | |
dc.identifier.citedreference | Keeling, R. F., Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S. C., et al. ( 2017 ). Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proceedings of the National Academy of Sciences, 114 ( 39 ), 10361 – 10366. https://doi.org/10.1073/pnas.1619240114 | |
dc.identifier.citedreference | Kohn, M. J. ( 2010 ). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proceedings of the National Academy of Sciences, 107 ( 46 ), 19691 – 19695. https://doi.org/10.1073/pnas.1004933107 | |
dc.identifier.citedreference | Littell, J. S., Elsner, M. M., Binder, L. C. W., & Snover, A. K. (Eds.). ( 2009 ). The Washington climate change impacts assessment: Evaluating Washington’s future in a changing climate, (PDF 14.1 MB) climate impacts group. University of Washington. | |
dc.identifier.citedreference | Little, E. L., Jr. ( 1971 ). Atlas of the United States trees. Volume 1. Conifers and important hardwoods. Misc. Publ. 1146 (p. 320 ). U.S. Department of Agriculture, Forest Service. | |
dc.identifier.citedreference | Little, E. L., Jr. ( 1979 ). Checklist of United States trees (native and naturalized)Agric. Handb. 541 (p. 375 ). U.S. Department of Agriculture, Forest Service. | |
dc.identifier.citedreference | Lomax, B. H., Lake, J. A., Leng, M. J., & Jardine, P. E. ( 2019 ). An experimental evaluation of the use of Δ 13 C as a proxy for palaeoatmospheric CO 2. Geochimica et Cosmochimica Acta, 247, 162 – 174. https://doi.org/10.1016/j.gca.2018.12.026 | |
dc.identifier.citedreference | Mantua, N. J., & Hare, S. R. ( 2002 ). The Pacific Decadal Oscillation. Journal of Oceanography, 58 ( 1 ), 35 – 44. https://doi.org/10.1023/a:1015820616384 | |
dc.identifier.citedreference | Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. ( 1997 ). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78 ( 6 ), 1069 – 1080. https://doi.org/10.1175/1520-0477(1997)078<1069:apicow>2.0.co;2 | |
dc.identifier.citedreference | McCabe, G. J., Betancourt, J. L., & Hidalgo, H. G. ( 2007 ). Associations of decadal to multidecadal sea‐surface temperature variability with upper Colorado River flow 1. JAWRA Journal of the American Water Resources Association, 43 ( 1 ), 183 – 192. https://doi.org/10.1111/j.1752-1688.2007.00015.x | |
dc.identifier.citedreference | McCabe, G. J., & Dettinger, M. D. ( 2002 ). Primary modes and predictability of year‐to‐year snowpack variations in the western United States from teleconnections with Pacific Ocean climate. Journal of Hydrometeorology, 3 ( 1 ), 13 – 25. https://doi.org/10.1175/1525-7541(2002)003<0013:pmapoy>2.0.co;2 | |
dc.identifier.citedreference | McClatchie, S. ( 2012 ). Sardine biomass is poorly correlated with the Pacific Decadal Oscillation off California. Geophysical Research Letters, 39, L13703. https://doi.org/10.1029/2012gl052140 | |
dc.identifier.citedreference | McGraw, M. C., & Barnes, E. A. ( 2018 ). Memory matters: A case for Granger causality in climate variability studies. Journal of Climate, 31 ( 8 ), 3289 – 3300. https://doi.org/10.1175/jcli-d-17-0334.1 | |
dc.identifier.citedreference | Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G., Danabasoglu, G., et al. ( 2009 ). Decadal prediction: Can it be skillful? Bulletin of the American Meteorological Society, 90 ( 10 ), 1467 – 1486. https://doi.org/10.1175/2009bams2778.1 | |
dc.identifier.citedreference | Meehl, G. A., Hu, A., Castruccio, F., England, M. H., Bates, S. C., Danabasoglu, G., et al. ( 2021 ). Atlantic and Pacific tropics connected by mutually interactive decadal‐timescale processes. Nature Geoscience, 14, 36 – 42. https://doi.org/10.1038/s41561-020-00669-x | |
dc.identifier.citedreference | Meir, P., Cox, P., & Grace, J. ( 2006 ). The influence of terrestrial ecosystems on climate. Trends in Ecology & Evolution, 21 ( 5 ), 254 – 260. https://doi.org/10.1016/j.tree.2006.03.005 | |
dc.identifier.citedreference | Minobe, S. ( 1997 ). A 50–70 year climatic oscillation over the North Pacific and North America. Geophysical Research Letters, 24 ( 6 ), 683 – 686. https://doi.org/10.1029/97gl00504 | |
dc.identifier.citedreference | Monteith, J. L., Szeicz, G., & Waggoner, P. E. ( 1965 ). The measurement and control of stomatal resistance in the field. Journal of Applied Ecology, 2, 345 – 355. https://doi.org/10.2307/2401484 | |
dc.identifier.citedreference | Montroy, D. L., Richman, M. B., & Lamb, P. J. ( 1998 ). Observed nonlinearities of monthly teleconnections between tropical Pacific sea surface temperature anomalies and central and eastern North American precipitation. Journal of Climate, 11 ( 7 ), 1812 – 1835. https://doi.org/10.1175/1520-0442(1998)011<1812:onomtb>2.0.co;2 | |
dc.identifier.citedreference | Morgan, J. A., LeCain, D. R., McCaig, T. N., & Quick, J. S. ( 1993 ). Gas exchange, carbon isotope discrimination, and productivity in winter wheat. Crop Science, 33 ( 1 ), 178 – 186. https://doi.org/10.2135/cropsci1993.0011183x003300010032x | |
dc.identifier.citedreference | Morgenstern, K., Black, T. A., Humphreys, E. R., Griffis, T. J., Drewitt, G. B., Cai, T., et al. ( 2004 ). Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas‐fir forest during an El Niño/La Niña cycle. Agricultural and Forest Meteorology, 123 ( 3–4 ), 201 – 219. https://doi.org/10.1016/j.agrformet.2003.12.003 | |
dc.identifier.citedreference | Mote, P. W., & Salathé, E. P. ( 2010 ). Future climate in the Pacific Northwest. Climatic Change, 102 ( 1–2 ), 29 – 50. https://doi.org/10.1007/s10584-010-9848-z | |
dc.identifier.citedreference | Mote, P. W., Salathé, E. P., Dulière, V., & Jump, E. ( 2008 ). Scenarios of future climate change for the Pacific Northwest. Climate Impacts Group, University of Washington. Seattle. | |
dc.identifier.citedreference | Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di Lorenzo, E., et al. ( 2016 ). The Pacific decadal oscillation, revisited. Journal of Climate, 29 ( 12 ), 4399 – 4427. https://doi.org/10.1175/jcli-d-15-0508.1 | |
dc.identifier.citedreference | O’Connell, L. M., Ritland, K., & Thompson, S. L. ( 2008 ). Patterns of post‐glacial colonization by western redcedar (Thuja plicata, Cupressaceae) as revealed by microsatellite markers. Botany, 86 ( 2 ), 194 – 203. | |
dc.identifier.citedreference | Orians, G. H., & Solbrig, O. T. ( 1977 ). A cost‐income model of leaves and roots with special reference to arid and semiarid areas. The American Naturalist, 111 ( 980 ), 677 – 690. https://doi.org/10.1086/283199 | |
dc.identifier.citedreference | Overland, J. E., Percival, D. B., & Mofjeld, H. O. ( 2006 ). Regime shifts and red noise in the North Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 53 ( 4 ), 582 – 588. https://doi.org/10.1016/j.dsr.2005.12.011 | |
dc.identifier.citedreference | Pate, J., & Arthur, D. ( 1998 ). δ 13 C analysis of phloem sap carbon: Novel means of evaluating seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of Eucalyptus globulus. Oecologia, 117, 301 – 311. https://doi.org/10.1007/s004420050663 | |
dc.identifier.citedreference | Pepin, S. ( 1998 ). Stomatal control of whole‐plant photosynthesis and transpiration in conifer seedlings (Doctoral dissertation). University of Victoria. | |
dc.identifier.citedreference | Pepin, S., & Livingston, N. J. ( 1997 ). Rates of stomatal opening in conifer seedlings in relation to air temperature and daily carbon gain. Plant, Cell and Environment, 20 ( 12 ), 1462 – 1472. https://doi.org/10.1046/j.1365-3040.1997.d01-40.x | |
dc.identifier.citedreference | Perala, D. A., & Russell, A. J. ( 1983 ). Aspen. In R. M. Burns (Ed.), Silvicultural systems for the major forest types of the United States. United States Department of Agriculture Forest Service handbook 445 (pp. 113 – 115 ). | |
dc.identifier.citedreference | Peters, W., van der Velde, I. R., Van Schaik, E., Miller, J. B., Ciais, P., Duarte, H. F., et al. ( 2018 ). Increased water‐use efficiency and reduced CO 2 uptake by plants during droughts at a continental scale. Nature Geoscience, 11 ( 10 ), 744 – 748. https://doi.org/10.1038/s41561-018-0212-7 | |
dc.identifier.citedreference | Rehfeldt, G. E. ( 1994 ). Genetic structure of western red cedar populations in the Interior West. Canadian Journal of Forest Research, 24 ( 4 ), 670 – 680. https://doi.org/10.1139/x94-090 | |
dc.identifier.citedreference | Ropelewski, C. F., & Halpert, M. S. ( 1986 ). North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Monthly Weather Review, 114 ( 12 ), 2352 – 2362. https://doi.org/10.1175/1520-0493(1986)114<2352:napatp>2.0.co;2 | |
dc.identifier.citedreference | Rubino, M., Etheridge, D. M., Trudinger, C. M., Allison, C. E., Battle, M. O., Langenfelds, R. L., et al. ( 2013 ). A revised 1000 year atmospheric δ 13 C‐CO 2 record from Law Dome and South Pole, Antarctica. Journal of Geophysical Research: Atmospheres, 118 ( 15 ), 8482 – 8499. https://doi.org/10.1002/jgrd.50668 | |
dc.identifier.citedreference | Salathe, E. P., Jr, Steed, R., Mass, C. F., & Zahn, P. H. ( 2008 ). A high‐resolution climate model for the US Pacific Northwest: Mesoscale feedbacks and local responses to climate change. Journal of Climate, 21 ( 21 ), 5708 – 5726. https://doi.org/10.1175/2008jcli2090.1 | |
dc.identifier.citedreference | Schwartz, R. E., Gershunov, A., Iacobellis, S. F., & Cayan, D. R. ( 2014 ). North American west coast summer low cloudiness: Broadscale variability associated with sea surface temperature. Geophysical Research Letters, 41 ( 9 ), 3307 – 3314. https://doi.org/10.1002/2014gl059825 | |
dc.identifier.citedreference | Sen Roy, S. ( 2011 ). Identification of periodicity in the relationship between PDO, El Niño and peak monsoon rainfall in India using S‐transform analysis. International Journal of Climatology, 31 ( 10 ), 1507 – 1517. https://doi.org/10.1002/joc.2172 | |
dc.identifier.citedreference | Sheldon, N. D., Smith, S. Y., Stein, R., & Ng, M. ( 2020 ). Carbon isotope ecology of gymnosperms and implications for paleoclimatic and paleoecological studies. Global and Planetary Change, 184, 103060. https://doi.org/10.1016/j.gloplacha.2019.103060 | |
dc.identifier.citedreference | Stein, R. A. ( 2021 ). Isotope geochemistry data for PNW Plants Manuscript. Mendeley Data, V2. https://doi.org/10.17632/sfs2nvf8z5.2 | |
dc.identifier.citedreference | Stein, R. A., Sheldon, N. D., & Smith, S. Y. ( 2019 ). Rapid response to anthropogenic climate change by Thuja occidentalis: Implications for past climate reconstructions and future climate predictions. PeerJ, 7, e7378. https://doi.org/10.7717/peerj.7378 | |
dc.identifier.citedreference | Stein, R. A., Sheldon, N. D., & Smith, S. Y. ( 2021a ). C 3 plant carbon isotope discrimination does not respond to CO 2 concentration on decadal to centennial timescales. New Phytologist, 229 ( 5 ), 2576 – 2585. https://doi.org/10.1111/nph.17030 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.