Show simple item record

Risk Factors for 100‐Year Flood Events in the Mid‐Atlantic Region of the United States

dc.contributor.authorTonn, Gina
dc.contributor.authorGuikema, Seth
dc.date.accessioned2021-11-02T00:44:43Z
dc.date.available2022-10-01 20:44:42en
dc.date.available2021-11-02T00:44:43Z
dc.date.issued2021-09
dc.identifier.citationTonn, Gina; Guikema, Seth (2021). "Risk Factors for 100‐Year Flood Events in the Mid‐Atlantic Region of the United States." Risk Analysis 41(9): 1540-1559.
dc.identifier.issn0272-4332
dc.identifier.issn1539-6924
dc.identifier.urihttps://hdl.handle.net/2027.42/170791
dc.description.abstractAnecdotal information indicates that streams in the Mid‐Atlantic region of the United States experience more extreme flood events than might be expected. This leads to the question of whether this is an unfounded perception or if these extreme events are actually occurring more than should be expected. If the latter is true, is this due solely to randomness, or alternately to characteristics that make certain watersheds more prone to repeated events that may be defined as 100‐year or greater floods? These questions are investigated through analysis of flood events based on standard flood frequency analysis. 100‐year streamflow rates for stream gages were estimated using Bulletin 17B flood frequency analysis methods, and the probability of the annual peak flow record for each gage was calculated. These probabilities were compared to a set of synthetic probabilities to evaluate their distribution. This comparison indicates that for the Mid‐Atlantic region as a whole, the Bulletin 17B method does not systematically over or underestimate flood frequency. A Random Forest model of probability of actual flood record (PAFR) versus watershed and stream gage characteristics was developed and used to understand if certain characteristics are associated with PAFR. This analysis indicated that unexpected numbers of large flood events in a stream gage period of record can be attributed primarily to randomness, but there is some correlation with watershed and gage characteristics including weighted skew, drainage area, and mean annual peak discharge. The results indicate that watersheds with high values of these characteristics may warrant advanced flood frequency methods.
dc.publisherWiley Periodicals, Inc.
dc.publisherUSGPO
dc.subject.other100‐year flood
dc.subject.otherflood frequency
dc.subject.otherrandom forest
dc.titleRisk Factors for 100‐Year Flood Events in the Mid‐Atlantic Region of the United States
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBusiness (General)
dc.subject.hlbtoplevelBusiness and Economics
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170791/1/risa13659.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170791/2/risa13659_am.pdf
dc.identifier.doi10.1111/risa.13659
dc.identifier.sourceRisk Analysis
dc.identifier.citedreferenceRoland, M. A., & Stuckey, M. H. ( 2008 ). Regression equations for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania. U.S. Geological Survey Scientific Investigations Report 2008–5102.
dc.identifier.citedreferencePaquet, E., Garavaglia, F., Garçon, R., & Gailhard, J. ( 2013 ). The SCHADEX method: A semi‐continuous rainfall–runoff simulation for extreme flood estimation. Journal of Hydrology, 495, 23 – 37.
dc.identifier.citedreferencePayrastre, O., Gaume, E., & Andrieu, H. ( 2011 ). Usefulness of historical information for flood frequency analyses: Developments based on a case study. Water Resources Research, 47 ( 8 ). https://doi.org/10.1029/2010WR009812.
dc.identifier.citedreferenceR Development Core Team. ( 2008 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org
dc.identifier.citedreferenceRies, K. G., & Dillow, J. ( 2006 ). Magnitude and frequency of floods on nontidal streams in Delaware. U.S. Geological Survey Scientific Investigations Report 2006–5146. 59 Retrieved from http://pubs.usgs.gov/sir/2006/5146/pdf/sir2006-5146.pdf
dc.identifier.citedreferenceRogger, M., Kohl, B., Pirkl, H., Viglione, A., Komma, J., Kirnbauer, R., … Blöschl, G. ( 2012 ). Runoff models and flood frequency statistics for design flood estimation in Austria–Do they tell a consistent story? Journal of Hydrology, 456, 30 – 43.
dc.identifier.citedreferenceRosner, A., Vogel, R. M., & Kirshen, P. H. ( 2014 ). A risk‐based approach to flood management decisions in a nonstationary world. Water Resources Research, 50 ( 3 ), 1928 – 1942.
dc.identifier.citedreferenceRoylance, F. D. ( 1996 ). Potomac ‘100‐year flood’ hits twice in eight months. Baltimore Sun September 11. Retrieved from http://articles.baltimoresun.com/1996-09-11/news/1996255144_1_potomac-hurricane-fran-flow
dc.identifier.citedreferenceStedinger, J. R. ( 2008 ). Flood frequency analysis in the United States: Time to update. Journal of Hydrologic Engineering, 13 ( 4 ), 199 – 204. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:4(199).
dc.identifier.citedreferenceStedinger, J. R., & Griffis, V. W. ( 2011 ). Getting from here to where? Flood frequency analysis and climate. Journal of the American Water Resources Association, 47 ( 3 ), 506 – 513. https://doi.org/10.1111/j.1752-1688.2011.00545.x
dc.identifier.citedreferenceTonn, G. L., Guikema, S. D., Ferreira, C. M., & Quiring, S. M. ( 2016 ). Hurricane Isaac: A longitudinal analysis of storm characteristics and power outage risk. Risk Analysis, 36 ( 1 ), 1936 – 1947. https://doi.org/10.1111/risa.12552
dc.identifier.citedreferenceUSACE. ( 1996 ). Risk‐based analysis for flood damage reduction studies ‐ Manual No. 1110‐2‐1619. Washington, DC: United States Army Corps of Engineers.
dc.identifier.citedreferenceUSGS. ( 2011 ). Geospatial attributes of gages for evaluating streamflow (GAGES) II data set. Reston, VA: US Geological Survey. Retrieved from http://water.usgs.gov/lookup/getspatial?gages
dc.identifier.citedreferenceUSGS. ( 2016 ). Floods: Recurrence intervals and 100‐year floods. Retrieved from http://water.usgs.gov/edu/100yearflood.html
dc.identifier.citedreferenceUSGS. ( 2018 ). National water inventory system (NWIS ). Retrieved from http://nwis.waterdata.usgs.gov/nwis on June 13, 2018.
dc.identifier.citedreferenceVillarini, G., & Smith, J. A. ( 2010 ). Flood peak distributions for the eastern United States. Water Resources Research, 46 ( 6 ). https://doi.org/10.1029/2009WR008395
dc.identifier.citedreferenceVillarini, G., Smith, J. A., Baeck, M. L., & Krajewski, W. F. ( 2011 ). Examining flood frequency distributions in the midwest US. Journal of the American Water Resources Association, 47 ( 3 ), 447 – 463. https://doi.org/10.1029/2009WR008395.
dc.identifier.citedreferenceWallis, J. R., & Wood, E. F. ( 1985 ). Relative accuracy of log Pearson III procedures. Journal of Hydraulic Engineering, 111 ( 7 ), 1043 – 1056. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:7(1043).
dc.identifier.citedreferenceWeaver, J., Feaster, T. D., & Gotvald, A. J. ( 2009 ). Magnitude and frequency of rural floods in the Southeastern United States, through 2006: Volume 2, North Carolina. U.S. Geological Survey Scientific Investigations Report 2009–5158.
dc.identifier.citedreferenceWiley, J. B., & Atkins, J. T. ( 2010 ). Estimation of flood‐frequency discharges for rural, unregulated streams in West Virginia. U.S. Geological Survey Scientific Investigations Report 2010–5033. Retrieved from http://pubs.usgs.gov/sir/2010/5033/pdf/sir2010-5033.pdf
dc.identifier.citedreferenceWiltshire, S. E. ( 1985 ). Grouping basins for regional flood frequency analysis. Hydrological Sciences Journal, 30 ( 1 ), 151 – 159. https://doi.org/10.1080/02626668509490976.
dc.identifier.citedreferenceAhmadisharaf, E., Tajrishy, M., & Alamdari, N. ( 2016 ). Integrating flood hazard into site selection of detention basins using spatial multi‐criteria decision‐making, Journal of Environmental Planning and Management, 59 ( 8 ), 1397 – 1417, https://doi.org/10.1080/09640568.2015.1077104
dc.identifier.citedreferenceAhmadisharaf, E., Kalyanapu, A., Lillywhite, J., & Tonn, G. ( 2018 ). A probabilistic framework to evaluate the uncertainty of design hydrograph case study of Swannanoa River watershed. Hydrological Sciences Journal, 63 ( 12 ), 1776 – 1790.
dc.identifier.citedreferenceAustin, S. H., Krstolic, J. L., & Wiegand, U. ( 2011 ). Peak‐flow characteristics of Virginia streams. U.S. Geological Survey Scientific Investigation Report 2011–5144. 106 Retrieved from http://pubs.usgs.gov/sir/2011/5144/
dc.identifier.citedreferenceBenson, M. A. ( 1962a ). Evolution of methods for evaluating the occurrence of floods. Report. (Series No. 1580‐A). USGPO.
dc.identifier.citedreferenceBenson, M. A. ( 1962b ). Factors influencing the occurrence of floods in a humid region of diverse terrain. Report. (Series No. 1580‐B). USGPO.
dc.identifier.citedreferenceBrunner, M. I., Seibert, J., & Favre, A. C. ( 2016 ). Bivariate return periods and their importance for flood peak and volume estimation. Wiley Interdisciplinary Reviews: Water, 3 ( 6 ), 819 – 833.
dc.identifier.citedreferenceBrunner, M. I., Viviroli, D., Sikorska, A. E., Vannier, O., Favre, A. C., & Seibert, J. ( 2017 ). Flood type specific construction of synthetic design hydrographs. Water Resources Research, 53 ( 2 ), 1390 – 1406.
dc.identifier.citedreferenceBrunner, M. I., Seibert, J., & Favre, A. C. ( 2018a ). Representative sets of design hydrographs for ungauged catchments: A regional approach using probabilistic region memberships. Advances in water resources, 112, 235 – 244.
dc.identifier.citedreferenceBrunner, M. I., Furrer, R., Sikorska, A. E., Viviroli, D., Seibert, J., & Favre, A. C. ( 2018b ). Synthetic design hydrographs for ungauged catchments: A comparison of regionalization methods. Stochastic Environmental Research and Risk Assessment, 32 ( 7 ), 1993 – 2023.
dc.identifier.citedreferenceBurn, D. H. ( 1988 ). Delineation of groups for regional flood frequency analysis. Journal of Hydrology, 104 ( 1 ), 345 – 361. https://doi.org/10.1016/0022-1694(88)90174-6.
dc.identifier.citedreferenceChristian, J., Duenas‐Osorio, L., Teague, A., Fang, Z., & Bedient, P. ( 2013 ). Uncertainty in floodplain delineation: Expression of flood hazard and risk in a Gulf Coast watershed. Hydrological Processes, 27 ( 19 ), 2774 – 2784. https://doi.org/10.1002/hyp.9360.
dc.identifier.citedreferenceClines, F. X. ( 2002 ). 100‐year flood for the second straight year. New York Times May 9.Retrieved from http://www.nytimes.com/2002/05/09/us/100-year-flood-for-the-second-straight-year.html
dc.identifier.citedreferenceEngland, J. F., Cohn, T. A., Faber, B. A., Stedinger, J. R., Thomas, Jr, W. O., Veilleux, A. G., … Mason, Jr, R. R. ( 2019 ). Guidelines for determining flood flow frequency—Bulletin 17. In Hydrologic analysis and interpretation. Reston, VA: US Geological Survey.
dc.identifier.citedreferenceFlynn, K. M., Kirby, W. H., & Hummel, P. R. ( 2006 ). User’s manual for program PeakFQ, annual flood‐frequency analysis using bulletin 17B guidelines. In Hydrologic analysis and interpretation. Reston, VA: US Geological Survey.
dc.identifier.citedreferenceGalloway, G. E. ( 2011 ). If stationarity is dead, what do we do now? Journal of the American Water Resources Association, 47 ( 3 ), 563 – 570. https://doi.org/10.1111/j.1752-1688.2011.00550.x.
dc.identifier.citedreferenceGamble, D. W. ( 1997 ). The relationship between drainage basin area and annual peak‐flood seasonality in the southeastern United States. Southeastern Geographer, 37 ( 1 ), 61 – 75.
dc.identifier.citedreferenceGräler, B., van den Berg, M., Vandenberghe, S., Petroselli, A., Grimaldi, S., De Baets, B., & Verhoest, N. ( 2013 ). Multivariate return periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences, 17 ( 4 ), 1281 – 1296.
dc.identifier.citedreferenceGoldman, D., Konieczki, M., & Faber, B. ( 2009 ). Delaware river basin regional skew analysis. US Army Corps of Engineers Project Report 70 (PR‐70).
dc.identifier.citedreferenceHastie, T., Tibshirani, R., & Friedman, J. ( 2001 ). The elements of statistical learning. Data mining, inference and prediction ( 1st ed ). New York: Springer.
dc.identifier.citedreferenceInteragency Advisory Committee on Water Data. ( 1982 ). Guidelines for determining flood flow frequency, bulletin 17B of the hydrology subcommittee. Reston, VA: US Geological Survey.
dc.identifier.citedreferenceJames, G., Witten, D., Hastie, T., & Tibshirani, R. ( 2013 ). An introduction to statistical learning. New York: Springer. Retrieved from http://pubs.usgs.gov/sir/2008/5102/pdf/sir2008-5102.pdf
dc.identifier.citedreferenceKidson, R., & Richards, K. S. ( 2005 ). Flood frequency analysis: Assumptions and alternatives. Progress in Physical Geography, 29 ( 3 ), 392 – 410. https://doi.org/10.1191/0309133305pp454ra.
dc.identifier.citedreferenceKirby, W. H., & Moss, M. E. ( 1987 ). Summary of flood‐frequency analysis in the United States. Journal of Hydrology, 96 ( 1 ), 5 – 14. https://doi.org/10.1016/0022-1694(87)90139-9
dc.identifier.citedreferenceKollat, J. B., Kasprzyk, J. R., Thomas, Jr., W. O., Miller, A. C., & Divoky, D. ( 2012 ). Estimating the impacts of climate change and population growth on flood discharges in the United States. Journal of Water Resources Planning and Management, 138 ( 5 ), 442 – 452. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000233.
dc.identifier.citedreferenceLettenmaier, D. P., Wallis, J. R., & Wood, E. F. ( 1987 ). Effect of regional heterogeneity on flood frequency estimation. Water Resources Research, 23 ( 2 ), 313 – 323. https://doi.org/10.1029/WR023i002p00313.
dc.identifier.citedreferenceLins, H. F., & Cohn, T. A. ( 2011 ). Stationarity: Wanted dead or alive? Journal of the American Water Resources Association, 47 ( 3 ), 475 – 480. https://doi.org/10.1111/j.1752-1688.2011.00542.x
dc.identifier.citedreferenceMaryland Hydrology Panel. ( 2010 ). Applications of hydrologic methods in Maryland. Report.
dc.identifier.citedreferenceMerz, R., & Bloschl, G. ( 2008 ). Flood frequency hydrology: 2. Combining data evidence. Water Resources Research, 44, 8. https://doi.org/10.1029/2007WR006745.
dc.identifier.citedreferenceMerz, B., & Thieken, A. H. ( 2005 ). Separating natural and epistemic uncertainty in flood frequency analysis. Journal of Hydrology, 309 ( 1‐4 ), 114 – 132. https://doi.org/10.1016/j.jhydrol.2004.11.015.
dc.identifier.citedreferenceMorss, R. E., Wilhelmi, O. V., Downton, M. W., & Gruntfest, E. ( 2005 ). Flood risk, uncertainty, and scientific information for decision making: Lessons from an interdisciplinary project. Bulletin of the American Meteorological Society, 86 ( 11 ), 1593 – 1601.
dc.identifier.citedreferenceNaz, B. S., Kao, S. C., Ashfaq, M., Gao, H., Rastogi, D., & Gangrade, S. ( 2018 ). Effects of climate change on streamflow extremes and implications for reservoir inflow in the United States. Journal of Hydrology, 556, 359 – 370.
dc.identifier.citedreferenceOuarda, T., & El Adlouni, S. ( 2011 ). Bayesian nonstationary frequency analysis of hydrological variables. Journal of the American Water Resources Association, 47 ( 3 ), 496 – 505. https://doi.org/10.1111/j.1752-1688.2011.00544.x
dc.identifier.citedreferencePandey, G. R., & Nguyen, V. T. V. ( 1999 ). A comparative study of regression based methods in regional flood frequency analysis. Journal of Hydrology, 225 ( 1 ), 92 – 101.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.