Show simple item record

Clinical and genetic spectrum of 104 Indian families with central nervous system white matter abnormalities

dc.contributor.authorKaur, Parneet
dc.contributor.authorRosario, Michelle C
dc.contributor.authorHebbar, Malavika
dc.contributor.authorSharma, Suvasini
dc.contributor.authorKausthubham, Neethukrishna
dc.contributor.authorNair, Karthik
dc.contributor.authorA, Shrikiran
dc.contributor.authorBhat Y, Ramesh
dc.contributor.authorLewis, Leslie Edward S
dc.contributor.authorNampoothiri, Sheela
dc.contributor.authorPatil, Siddaramappa J
dc.contributor.authorSuresh, Narayanaswami
dc.contributor.authorBijarnia Mahay, Sunita
dc.contributor.authorDua Puri, Ratna
dc.contributor.authorPai, Shivanand
dc.contributor.authorKaur, Anupriya
dc.contributor.authorKc, Rakshith
dc.contributor.authorKamath, Nutan
dc.contributor.authorBajaj, Shruti
dc.contributor.authorKumble, Ali
dc.contributor.authorShetty, Rajesh
dc.contributor.authorShenoy, Rathika
dc.contributor.authorKamate, Mahesh
dc.contributor.authorShah, Hitesh
dc.contributor.authorMuranjan, Mamta N
dc.contributor.authorBl, Yatheesha
dc.contributor.authorAvabratha, K Shreedhara
dc.contributor.authorSubramaniam, Girish
dc.contributor.authorKadavigere, Rajagopal
dc.contributor.authorBielas, Stephanie
dc.contributor.authorGirisha, Katta Mohan
dc.contributor.authorShukla, Anju
dc.date.accessioned2021-11-02T00:44:48Z
dc.date.available2022-12-01 20:44:47en
dc.date.available2021-11-02T00:44:48Z
dc.date.issued2021-11
dc.identifier.citationKaur, Parneet; Rosario, Michelle C; Hebbar, Malavika; Sharma, Suvasini; Kausthubham, Neethukrishna; Nair, Karthik; A, Shrikiran; Bhat Y, Ramesh; Lewis, Leslie Edward S; Nampoothiri, Sheela; Patil, Siddaramappa J; Suresh, Narayanaswami; Bijarnia Mahay, Sunita; Dua Puri, Ratna; Pai, Shivanand; Kaur, Anupriya; Kc, Rakshith ; Kamath, Nutan; Bajaj, Shruti; Kumble, Ali; Shetty, Rajesh; Shenoy, Rathika; Kamate, Mahesh; Shah, Hitesh; Muranjan, Mamta N; Bl, Yatheesha ; Avabratha, K Shreedhara; Subramaniam, Girish; Kadavigere, Rajagopal; Bielas, Stephanie; Girisha, Katta Mohan; Shukla, Anju (2021). "Clinical and genetic spectrum of 104 Indian families with central nervous system white matter abnormalities." Clinical Genetics 100(5): 542-550.
dc.identifier.issn0009-9163
dc.identifier.issn1399-0004
dc.identifier.urihttps://hdl.handle.net/2027.42/170794
dc.description.abstractGenetic disorders with predominant central nervous system white matter abnormalities (CNS WMAs), also called leukodystrophies, are heterogeneous entities. We ascertained 117 individuals with CNS WMAs from 104 unrelated families. Targeted genetic testing was carried out in 16 families and 13 of them received a diagnosis. Chromosomal microarray (CMA) was performed for three families and one received a diagnosis. Mendeliome sequencing was used for testing 11 families and all received a diagnosis. Whole exome sequencing (WES) was performed in 80 families and was diagnostic in 52 (65%). Singleton WES was diagnostic for 50/75 (66.67%) families. Overall, genetic diagnoses were obtained in 77 families (74.03%). Twenty‐two of 47 distinct disorders observed in this cohort have not been reported in Indian individuals previously. Notably, disorders of nuclear mitochondrial pathology were most frequent (9 disorders in 20 families). Thirty‐seven of 75 (49.33%) disease‐causing variants are novel. To sum up, the present cohort describes the phenotypic and genotypic spectrum of genetic disorders with CNS WMAs in our population. It demonstrates WES, especially singleton WES, as an efficient tool in the diagnosis of these heterogeneous entities. It also highlights possible founder events and recurrent disease‐causing variants in our population and their implications on the testing strategy.
dc.publisherBlackwell Publishing Ltd
dc.publisherWiley Periodicals, Inc.
dc.subject.otherwhite matter disease
dc.subject.otherleukoencephalopathy
dc.subject.othernext generation sequencing
dc.subject.otherwhole exome sequencing
dc.titleClinical and genetic spectrum of 104 Indian families with central nervous system white matter abnormalities
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170794/1/cge14037.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170794/2/cge14037_am.pdf
dc.identifier.doi10.1111/cge.14037
dc.identifier.sourceClinical Genetics
dc.identifier.citedreferenceSheth J, Mistri M, Sheth F, et al. Burden of lysosomal storage disorders in India: experience of 387 affected children from a single diagnostic facility. JIMD Rep. 2014; 12: 51 ‐ 63.
dc.identifier.citedreferenceRichards J, Korgenski EK, Taft RJ, Vanderver A, Bonkowsky JL. Targeted leukodystrophy diagnosis based on charges and yields for testing. Am J Med Genet A. 2015; 167a ( 11 ): 2541 ‐ 2543.
dc.identifier.citedreferenceCohen L, Manín A, Medina N, et al. Argentinian clinical genomics in a leukodystrophies and genetic leukoencephalopathies cohort: diagnostic yield in our first 9 years. Ann Hum Genet. 2020; 84 ( 1 ): 11 ‐ 28.
dc.identifier.citedreferenceChen Z, Tan YJ, Lian MM, et al. High diagnostic utility incorporating a targeted neurodegeneration gene panel with MRI brain diagnostic algorithms in patients with young‐onset cognitive impairment with Leukodystrophy. Front Neurol. 2021; 12: 631407.
dc.identifier.citedreferenceParayil Sankaran B, Nagappa M, Chiplunkar S, et al. Leukodystrophies and genetic leukoencephalopathies in children specified by exome sequencing in an expanded gene panel. J Child Neurol. 2020; 35 ( 7 ): 433 ‐ 441.
dc.identifier.citedreferenceXie JJ, Ni W, Wei Q, et al. New clinical characteristics and novel pathogenic variants of patients with hereditary leukodystrophies. CNS Neurosci Ther. 2020; 26 ( 5 ): 567 ‐ 575.
dc.identifier.citedreferenceHelman G, Lajoie BR, Crawford J, et al. Genome sequencing in persistently unsolved white matter disorders. Ann Clin Transl Neurol. 2020; 7 ( 1 ): 144 ‐ 152.
dc.identifier.citedreferenceLynch DS, Rodrigues Brandao de Paiva A, Zhang WJ, et al. Clinical and genetic characterization of leukoencephalopathies in adults. Brain. 2017; 140 ( 5 ): 1204 ‐ 1211.
dc.identifier.citedreferenceKunii M, Doi H, Ishii Y, et al. Genetic analysis of adult leukoencephalopathy patients using a custom‐designed gene panel. Clin Genet. 2018; 94 ( 2 ): 232 ‐ 238.
dc.identifier.citedreferenceVanderver A, Bernard G, Helman G, et al. Randomized clinical trial of first‐line genome sequencing in pediatric white matter disorders. Ann Neurol. 2020; 88 ( 2 ): 264 ‐ 273.
dc.identifier.citedreferenceMahdieh N, Soveizi M, Tavasoli AR, et al. Genetic testing of leukodystrophies unraveling extensive heterogeneity in a large cohort and report of five common diseases and 38 novel variants. Sci Rep. 2021; 11 ( 1 ): 3231.
dc.identifier.citedreferenceAlfadhel M, Almuqbil M, Al Mutairi F, et al. The Leukodystrophy Spectrum in Saudi Arabia: epidemiological, clinical, radiological, and genetic data. Front Pediatr. 2021; 9: 633385.
dc.identifier.citedreferenceShukla A, Kaur P, Girisha KM. Report of the third family with multiple mitochondrial dysfunctions syndrome 5 caused by the founder variant p.(Glu87Lys) in ISCA1. J Pediatr Genet. 2018; 7 ( 3 ): 130 ‐ 133.
dc.identifier.citedreferenceShukla A, Narayanan DL, Kaur P, Girisha KM. ISCA1‐related multiple mitochondrial dysfunctions syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews(®). University of Washington; 2019: 1993 ‐ 2020.
dc.identifier.citedreferenceShukla A, Hebbar M, Srivastava A, et al. Homozygous p.(Glu87Lys) variant in ISCA1 is associated with a multiple mitochondrial dysfunctions syndrome. J Hum Genet. 2017; 62 ( 7 ): 723 ‐ 727.
dc.identifier.citedreferenceShukla A, Das Bhowmik A, Hebbar M, et al. Homozygosity for a nonsense variant in AIMP2 is associated with a progressive neurodevelopmental disorder with microcephaly, seizures, and spastic quadriparesis. J Hum Genet. 2018; 63 ( 1 ): 19 ‐ 25.
dc.identifier.citedreferenceGalada C, Hebbar M, Lewis L, et al. Report of four novel variants in ASNS causing asparagine synthetase deficiency and review of literature. Congenit Anom (Kyoto). 2018; 58 ( 5 ): 181 ‐ 182.
dc.identifier.citedreferenceSamaddar S, Kaur P, Rajagopal KV, Girisha KM, Shukla A, Sharma S. Spastic paraplegia type 56 in a young child. Indian J Pediatr. 2020; 87 ( 8 ): 650 ‐ 651.
dc.identifier.citedreferenceKaur P, Sharma S, Kadavigere R, Girisha KM, Shukla A. Novel variant p.(Ala102Thr) in SDHB causes mitochondrial complex II deficiency: case report and review of the literature. Ann Hum Genet. 2020; 84 ( 4 ): 345 ‐ 351.
dc.identifier.citedreferenceKaur P, Neethukrishna K, Kumble A, Girisha KM, Shukla A. Identification of a novel homozygous variant confirms ITPA as a developmental and epileptic encephalopathy gene. Am J Med Genet A. 2019; 179 ( 5 ): 857 ‐ 861.
dc.identifier.citedreferenceKaur P, Bhavani GS, Raj A, Girisha KM, Shukla A. Homozygous variant, p.(Arg643Trp) in VAC14 causes striatonigral degeneration: report of a novel variant and review of VAC14‐related disorders. J Hum Genet. 2019; 64 ( 12 ): 1237 ‐ 1242.
dc.identifier.citedreferenceKaur P, Wamelink MMC, van der Knaap MS, Girisha KM, Shukla A. Confirmation of a rare genetic leukoencephalopathy due to a novel bi‐allelic variant in RPIA. Eur J Med Genet. 2019; 62 ( 8 ): 103708.
dc.identifier.citedreferenceHebbar M, Kanthi A, Shrikiran A, et al. P.Arg69Trp in RNASEH2C is a founder variant in three Indian families with Aicardi‐Goutières syndrome. Am J Med Genet A. 2018; 176 ( 1 ): 156 ‐ 160.
dc.identifier.citedreferenceSrivastava A, Srivastava KR, Hebbar M, et al. Genetic diversity of NDUFV1‐dependent mitochondrial complex I deficiency. Eur J Hum Genet. 2018; 26 ( 11 ): 1582 ‐ 1587.
dc.identifier.citedreferenceNarayanan DL, Matta D, Gupta N, et al. Spectrum of ARSA variations in Asian Indian patients with arylsulfatase a deficient metachromatic leukodystrophy. J Hum Genet. 2019; 64 ( 4 ): 323 ‐ 331.
dc.identifier.citedreferenceShukla P, Vasisht S, Srivastava R, et al. Molecular and structural analysis of metachromatic leukodystrophy patients in Indian population. J Neurol Sci. 2011; 301 ( 1–2 ): 38 ‐ 45.
dc.identifier.citedreferenceShukla P, Gupta N, Ghosh M, et al. Molecular genetic studies in Indian patients with megalencephalic leukoencephalopathy. Pediatr Neurol. 2011; 44 ( 6 ): 450 ‐ 458.
dc.identifier.citedreferenceTewari VV, Mehta R, Sreedhar CM, et al. A novel homozygous mutation in POLR3A gene causing 4H syndrome: a case report. BMC Pediatr. 2018; 18 ( 1 ): 126.
dc.identifier.citedreferenceMichael SN, Madaan P, Jauhari P, Chakrabarty B, Kumar A, Gulati S. Selective pyramidal tract involvement in late‐onset Krabbe disease. Indian J Pediatr. 2019; 86 ( 10 ): 970 ‐ 971.
dc.identifier.citedreferenceRamesh K, Sharma S, Kumar A, Salomons GS, van der Knaap MS, Gulati S. Infantile‐onset Alexander disease: a genetically proven case with mild clinical course in a 6‐year‐old Indian boy. J Child Neurol. 2013; 28 ( 3 ): 396 ‐ 398.
dc.identifier.citedreferenceSharma S, Ajij M, Singh V, Aneja S. Vanishing white matter disease with mutations in EIF2B5 gene. Indian J Pediatr. 2015; 82 ( 1 ): 93 ‐ 95.
dc.identifier.citedreferenceGowda VK, Bhat MD, Srinivasan VM, Prasad C, Benakappa A, Faruq M. A case of Canavan disease with microcephaly. Brain Dev. 2016; 38 ( 8 ): 759 ‐ 762.
dc.identifier.citedreferenceSharma S, Sankhyan N, Kumar A, Scheper GC, van der Knaap MS, Gulati S. Leukoencephalopathy with brain stem and spinal cord involvement and high lactate: a genetically proven case without elevated white matter lactate. J Child Neurol. 2011; 26 ( 6 ): 773 ‐ 776.
dc.identifier.citedreferenceShah H, Chandarana M, Sheth J, Shah S. A case report of chronic progressive Pancerebellar syndrome with leukoencephalopathy:L‐2 Hydroxyglutaric aciduria. Mov Disord Clin Pract. 2020; 7 ( 5 ): 560 ‐ 563.
dc.identifier.citedreferenceTuteja M, Bidchol AM, Girisha KM, Phadke S. White matter changes in GM1 gangliosidosis. Indian Pediatr. 2015; 52 ( 2 ): 155 ‐ 156.
dc.identifier.citedreferenceNetravathi M, Kumari R, Kapoor S, et al. Whole exome sequencing in an Indian family links coats plus syndrome and dextrocardia with a homozygous novel CTC1 and a rare HES7 variation. BMC Med Genet. 2015; 16: 5.
dc.identifier.citedreferenceNaik N, Shah A, Wamelink MMC, van der Knaap MS, Hingwala D. Rare case of ribose 5 phosphate isomerase deficiency with slowly progressive leukoencephalopathy. Neurology. 2017; 89 ( 11 ): 1195 ‐ 1196.
dc.identifier.citedreferenceVinayagamani S, Nair SS, Sundaram S. Teaching NeuroImages: Hypomyelinating leukodystrophy with generalized dystonia. Neurology. 2020; 94 ( 3 ): e335 ‐ e336.
dc.identifier.citedreferenceSenthilvelan S, Kandasamy S, Menon RN, et al. Methylenetetrahydrofolate reductase deficiency as a cause of treatable adult‐onset leukoencephalopathy and myelopathy. Clin Neuroradiol. 2021; 31 ( 1 ): 277 ‐ 281.
dc.identifier.citedreferenceYadav S, Bentley P, Srivastava P, Prasad K, Sharma P. The first Indian‐origin family with genetically proven cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). J Stroke Cerebrovasc Dis. 2013; 22 ( 1 ): 28 ‐ 31.
dc.identifier.citedreferencePreethish‐Kumar V, Nozaki H, Tiwari S, et al. CARASIL families from India with 3 novel null mutations in the HTRA1 gene. Neurology. 2017; 89 ( 23 ): 2392 ‐ 2394.
dc.identifier.citedreferenceTamhankar PM, Zhu B, Tamhankar VP, et al. A novel Hypomorphic CSF1R gene mutation in the Biallelic state leading to fatal childhood neurodegeneration. Neuropediatrics. 2020; 51 ( 4 ): 302 ‐ 306.
dc.identifier.citedreferenceKumar N, Taneja KK, Kalra V, Behari M, Aneja S, Bansal SK. Genomic profiling identifies novel mutations and SNPs in ABCD1 gene: a molecular, biochemical and clinical analysis of X‐ALD cases in India. PLoS One. 2011; 6 ( 9 ): e25094.
dc.identifier.citedreferenceMuranjan M, Karande S, Sankhe S, Eichler S. Childhood cerebral X‐linked adrenoleukodystrophy with atypical neuroimaging abnormalities and a novel mutation. J Postgrad Med. 2018; 64 ( 1 ): 59 ‐ 63.
dc.identifier.citedreferenceDallabona C, Abbink TE, Carrozzo R, et al. LYRM7 mutations cause a multifocal cavitating leukoencephalopathy with distinct MRI appearance. Brain. 2016; 139 ( Pt 3 ): 782 ‐ 794.
dc.identifier.citedreferenceChiplunkar S, Bindu PS, Nagappa M, et al. Huppke‐Brendel syndrome in a seven months old boy with a novel 2‐bp deletion in SLC33A1. Metab Brain Dis. 2016; 31 ( 5 ): 1195 ‐ 1198.
dc.identifier.citedreferenceSchiffmann R, van der Knaap MS. Invited article: an MRI‐based approach to the diagnosis of white matter disorders. Neurology. 2009; 72 ( 8 ): 750 ‐ 759.
dc.identifier.citedreferenceWang Y, Martinez JE, Wilson GL, et al. A novel RSK2 (RPS6KA3) gene mutation associated with abnormal brain MRI findings in a family with coffin‐Lowry syndrome. Am J Med Genet A. 2006; 140 ( 12 ): 1274 ‐ 1279.
dc.identifier.citedreferenceNakatsuka N, Moorjani P, Rai N, et al. The promise of discovering population‐specific disease‐associated genes in South Asia. Nat Genet. 2017; 49 ( 9 ): 1403 ‐ 1407.
dc.identifier.citedreferenceAnkala A, Tamhankar PM, Valencia CA, Rayam KK, Kumar MM, Hegde MR. Clinical applications and implications of common and founder mutations in Indian subpopulations. Hum Mutat. 2015; 36 ( 1 ): 1 ‐ 10.
dc.identifier.citedreferenceSinghal BS, Gorospe JR, Naidu S. Megalencephalic leukoencephalopathy with subcortical cysts. J Child Neurol. 2003; 18 ( 9 ): 646 ‐ 652.
dc.identifier.citedreferenceMonies D, Abouelhoda M, AlSayed M, et al. The landscape of genetic diseases in Saudi Arabia based on the first 1000 diagnostic panels and exomes. Hum Genet. 2017; 136 ( 8 ): 921 ‐ 939.
dc.identifier.citedreferenceKevelam SH, Steenweg ME, Srivastava S, et al. Update on Leukodystrophies: a historical perspective and adapted definition. Neuropediatrics. 2016; 47 ( 6 ): 349 ‐ 354.
dc.identifier.citedreferenceParikh S, Bernard G, Leventer RJ, et al. A clinical approach to the diagnosis of patients with leukodystrophies and genetic leukoencephelopathies. Mol Genet Metab. 2015; 114 ( 4 ): 501 ‐ 515.
dc.identifier.citedreferenceShukla A, Kaur P, Narayanan DL, do Rosario MC, Kadavigere R, Girisha KM. Genetic disorders with central nervous system white matter abnormalities: an update. Clin Genet. 2021; 99 ( 1 ): 119 ‐ 132.
dc.identifier.citedreferencevan der Knaap MS, Schiffmann R, Mochel F, Wolf NI. Diagnosis, prognosis, and treatment of leukodystrophies. Lancet Neurol. 2019; 18 ( 10 ): 962 ‐ 972.
dc.identifier.citedreferenceVanderver A, Simons C, Helman G, et al. Whole exome sequencing in patients with white matter abnormalities. Ann Neurol. 2016; 79 ( 6 ): 1031 ‐ 1037.
dc.identifier.citedreferenceVanderver A, Prust M, Tonduti D, et al. Case definition and classification of leukodystrophies and leukoencephalopathies. Mol Genet Metab. 2015; 114 ( 4 ): 494 ‐ 500.
dc.identifier.citedreferencevan der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol. 2017; 134 ( 3 ): 351 ‐ 382.
dc.identifier.citedreferenceSirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. Cell. 2019; 177 ( 1 ): 26 ‐ 31.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.