Show simple item record

A call for transplant stewardship: The need for expanded evidence‐based evaluation of induction and biologic‐based cost‐saving strategies in kidney transplantation and beyond

dc.contributor.authorJorgenson, Margaret R.
dc.contributor.authorDescourouez, Jillian L.
dc.contributor.authorBrady, Bethany L.
dc.contributor.authorChandran, Mary M.
dc.contributor.authorDo, Vincent
dc.contributor.authorKim, Miae
dc.contributor.authorLaub, Melissa R.
dc.contributor.authorLichvar, Alicia
dc.contributor.authorPark, Jeong M.
dc.contributor.authorSzczepanik, Amanda
dc.contributor.authorAlloway, Rita R.
dc.date.accessioned2021-11-02T00:44:50Z
dc.date.available2022-10-01 20:44:49en
dc.date.available2021-11-02T00:44:50Z
dc.date.issued2021-09
dc.identifier.citationJorgenson, Margaret R.; Descourouez, Jillian L.; Brady, Bethany L.; Chandran, Mary M.; Do, Vincent; Kim, Miae; Laub, Melissa R.; Lichvar, Alicia; Park, Jeong M.; Szczepanik, Amanda; Alloway, Rita R. (2021). "A call for transplant stewardship: The need for expanded evidence‐based evaluation of induction and biologic‐based cost‐saving strategies in kidney transplantation and beyond." Clinical Transplantation 35(9): n/a-n/a.
dc.identifier.issn0902-0063
dc.identifier.issn1399-0012
dc.identifier.urihttps://hdl.handle.net/2027.42/170795
dc.description.abstractRising expenditures threaten healthcare sustainability. While transplant programs are typically considered profitable, transplant medications are expensive and frequently targeted for cost savings. This review aims to summarize available literature supporting cost‐containment strategies used in solid organ transplant. Despite widespread use of these tactics, we found the available evidence to be fairly low quality. Strategies mainly focus on induction, particularly rabbit antithymocyte globulin (rATG), given its significant cost and the lack of consensus surrounding dosing. While there is higher‐quality evidence for high single‐dose rATG, and dose‐rounding protocols to reduce waste are likely low risk, more aggressive strategies, such as dosing rATG by CD3+ target‐attainment or on ideal‐body‐weight, have less robust support and did not always attain similar efficacy outcomes. Extrapolation of induction dosing strategies to rejection treatment is not supported by any currently available literature. Cost‐saving strategies for supportive therapies, such as IVIG and rituximab also have minimal literature support. Deferral of high‐cost agents to the outpatient arena is associated with minimal risk and increases reimbursement, although may increase complexity and cost‐burden for patients and infusion centers. The available evidence highlights the need for evaluation of unique patient‐specific clinical scenarios and optimization of therapies, rather than simple blanket application of cost‐saving initiatives in the transplant population.
dc.publisherNovartis Pharmaceuticals Corporation
dc.publisherWiley Periodicals, Inc.
dc.subject.otherrisk assessment/risk stratification
dc.subject.otherrisk assessment/risk stratification
dc.subject.othereconomics
dc.subject.otherimmunosuppressive regimens
dc.subject.othereconomics
dc.subject.otherimmunosuppressive regimens
dc.subject.otherrisk assessment/risk stratification
dc.subject.othereconomics
dc.subject.otherimmunosuppressive regimens
dc.subject.otherrisk assessment/risk stratification
dc.subject.othereconomics
dc.subject.otherimmunosuppressive regimens
dc.titleA call for transplant stewardship: The need for expanded evidence‐based evaluation of induction and biologic‐based cost‐saving strategies in kidney transplantation and beyond
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170795/1/ctr14372_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170795/2/ctr14372.pdf
dc.identifier.doi10.1111/ctr.14372
dc.identifier.sourceClinical Transplantation
dc.identifier.citedreferenceHirsch HH, Randhawa PS. BK polyomavirus in solid organ transplantation‐Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019; 33 ( 9 ): e13528.
dc.identifier.citedreferenceHardinger K, Rasu R, Skelton R, et al. Thymoglobulin induction dosing strategies in a low‐risk kidney transplant population: three or four days? J Transpl. 2010; 2010: 1 ‐ 8.
dc.identifier.citedreferenceStevens RB, Mercer DF, Grant WJ, et al. Randomized trial of single‐dose versus divided‐dose rabbit anti‐thymocyte globulin induction in renal transplantation: An interim report. Transplantation. 2008; 85: 1391 ‐ 1399.
dc.identifier.citedreferenceStevens RB, Foster KW, Miles CD, et al. A randomized 2x2 factorial trial, part 1: Single‐dose rabbit antithymocyte globulin induction may improve renal transplantation outcomes. Transplantation. 2015; 99: 197 ‐ 209.
dc.identifier.citedreferenceStevens RB, Wrenshall LE, Miles CD, et al. A double‐blind, double‐dummy, flexible‐design randomized multicenter trial: early safety of single‐ versus divided‐dose rabbit anti‐thymocyte globulin induction in renal transplantation. Am J Transplant. 2016; 16 ( 6 ): 1858 ‐ 1867. https://doi.org/10.1111/ajt.13659
dc.identifier.citedreferenceNafar M, Dalili N, Poor‐Reza‐Gholi F, et al. The appropriate dose of thymoglobulin induction therapy in kidney transplantation. Clin Transplant. 2017; 31 ( e12977 ): 1 ‐ 8.
dc.identifier.citedreferenceGaber AO, Firt MR, Tesi RJ, et al. Results of the double‐blind, randomized, multicenter, phase III clinical trial of Thymoglobulin versus Atgam in the treatment of acute graft rejection episodes after renal transplantation. Transplantation. 1998; 66: 29 ‐ 37.
dc.identifier.citedreferenceWiland AM, Fink JC, Philosophe B, et al. Peripheral administration of thymoglobulin for induction therapy in pancreas transplantation. Transplant Proc. 2001; 33: 1910.
dc.identifier.citedreferenceMarvin MR, Droogan C, Sawinski D, Cohen DJ, Hardy MA. Administration of rabbit antithymocyte globulin (Thymoglobulin) in ambulatory renal‐transplant patients. Transplantation. 2003; 75: 488 ‐ 489.
dc.identifier.citedreferenceErickson AL, Roberts K, Malek SK, Chandraker AK, Tullius SG, Gabardi S. Analysis of infusion‐site reactions in renal transplant recipients receiving peripherally administered rabbit antithymocyte globulin as compared with basiliximab. Transpl Int. 2010; 23: 636 ‐ 640.
dc.identifier.citedreferenceMcGillicuddy JW, Taber DJ, Pilch NA, et al. Clinical economic analysis of delayed administration of antithymocyte globulin for induction therapy in kidney transplantation. Prog Transplant. 2013; 23: 33 ‐ 38.
dc.identifier.citedreferenceMillennium and ILEX Partners, LP. Campath (ALEMTUZUMAB). Cambridge, MA: 2001.
dc.identifier.citedreferenceKaufman DB, Leventhal JR, Gallon LG, Parker MA. Alemtuzumab induction and prednisone‐free maintenance immunotherapy in simultaneous pancreas‐kidney transplantation comparison with rabbit antithymocyte globulin induction – long term results. Am J Transplant. 2006; 6 ( 2 ): 331 ‐ 339.
dc.identifier.citedreferenceSethi S, Choi J, Toyoda M, Vo A, Peng A, Jordan SC. Desensitization: overcoming the immunologic barriers to transplantation. J Immunol Res. 2017; 2017: 6804678. https://doi.org/10.1155/2017/6804678
dc.identifier.citedreferenceKotton CN, Kumar D, Caliendo AM, et al. The third international consensus guidelines on the management of cytomegalovirus in solid‐organ transplantation. Transplantation. 2018; 102 ( 6 ): 900 ‐ 931. https://doi.org/10.1097/TP.0000000000002191
dc.identifier.citedreferenceRazonable RR, Humar A. Cytomegalovirus in solid organ transplant recipients ‐guidelines of the American Society of Transplantation Infectious Disease Community of Practice. Clin Transplant. 2019; 33 ( 9 ): e13512. https://doi.org/10.1111/ctr.13512
dc.identifier.citedreferenceShehata N, Palda VA, Meyer RM, et al. The use of immunoglobulin therapy for patients undergoing solid organ transplantation: an evidence‐based practice guideline. Transfus Med Rev. 2010; 24 ( Suppl 1 ): S7 ‐ S27.
dc.identifier.citedreferenceWan SS, Ying TD, Wyburn K, Roberts DM, Wyld M, Chadban SJ. The treatment of antibody‐mediated rejection in kidney transplantation: an updated systematic review and meta‐analysis. Transplantation. 2018; 102 ( 4 ): 557 ‐ 568.
dc.identifier.citedreferenceKoleba T, Ensom MH. Pharmacokinetics of intravenous immunoglobulin: a systematic review. Pharmacotherapy. 2006; 26 ( 6 ): 813 ‐ 827. https://doi.org/10.1592/phco.26.6.813. PMID: 16716135
dc.identifier.citedreferenceRocchio MA, Schurr JW, Hussey AP, Szumita PM. Intravenous immune globulin stewardship program at a tertiary academic medical center. Ann Pharmacother. 2017; 51 ( 2 ): 135 ‐ 139.
dc.identifier.citedreferenceFiggins BS, Aitken SL, Whited LK. Optimization of intravenous immune globulin use at a comprehensive cancer center. Am J Health Syst Pharm. 2019; 76 ( Supplement_4 ): S102 ‐ S106. https://doi.org/10.1093/ajhp/zxz233. PMID: 31621877
dc.identifier.citedreferenceKrisl JC, Fortier CR, Taber DJ. Disruptions in the supply of medications used in transplantation: implications and management strategies for the transplant clinician. Am J Transplant. 2013; 13 ( 1 ): 20 ‐ 30. https://doi.org/10.1111/j.1600‐6143.2012.04308.x
dc.identifier.citedreferenceBonaros N, Mayer B, Schachner T, Laufer G, Kocher A. CMV‐hyperimmuneglobulin for preventing cytomegalovirus infection and disease in solid organ transplant recipients: a meta‐analysis. Clin Transplant. 2008; 22 ( 1 ): 89 ‐ 97.
dc.identifier.citedreferenceHodson EM, Jones CA, Strippoli GF, Webster AC, Craig JC. Immunoglobulins, vaccines or interferon for preventing cytomegalovirus disease in solid organ transplant recipients. Cochrane Database Syst Rev. 2007; 2: CD005129.
dc.identifier.citedreferenceKrause I, Wu R, Sherer Y, Patanik M, Peter JB, Shoenfeld Y. In vitro antiviral and antibacterial activity of commercial intravenous immunoglobulin preparations–a potential role for adjuvant intravenous immunoglobulin therapy in infectious diseases. Transfus Med. 2002; 12 ( 2 ): 133 ‐ 139.
dc.identifier.citedreferenceMiescher SM, Huber TM, Kühne M, et al. In vitro evaluation of cytomegalovirus‐specific hyperimmune globulins vs. standard intravenous immunoglobulins. Vox Sang. 2015; 109 ( 1 ): 71 ‐ 78.
dc.identifier.citedreferencePlanitzer CB, Saemann MD, Gajek H, Farcet MR, Kreil TR. Cytomegalovirus neutralization by hyperimmune and standard intravenous immunoglobulin preparations. Transplantation. 2011; 92 ( 3 ): 267 ‐ 270.
dc.identifier.citedreferenceShibaguchi H, Yamamoto T, Kuroki M, Futagami K. Measurement and assessment of cytomegalovirus of immunoglobulin (Ig) g titer in preparations. Yakugaku Zasshi. 2010; 130 ( 7 ): 977 ‐ 982.
dc.identifier.citedreferenceRituxan (rituximab). Package Insert. South San Francisco, CA: Genetech Inc. 2020.
dc.identifier.citedreferenceGreen H, Nesher E, Aizner S, et al. Long‐term results of desensitization protocol with and without rituximab in sensitized kidney transplant recipients. Clin Transplant. 2019; 33 ( 6 ): e13562.
dc.identifier.citedreferenceNg CM, Bruno R, Combs D, Davies B. Population pharmacokinetics of rituximab (anti‐CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. J Clin Pharmacol. 2005; 45 ( 7 ): 792 ‐ 801. https://doi.org/10.1177/0091270005277075. PMID: 15951469
dc.identifier.citedreferenceBecker YT, Becker BN, Pirsch JD, Sollinger HW. Rituximab as treatment for refractory kidney transplant rejection. Am J Transplant. 2004; 4 ( 6 ): 996 ‐ 1001.
dc.identifier.citedreferenceMulley WR, Hudson FJ, Tait BD, et al. A single low‐fixed dose of rituximab to salvage renal transplants from refractory antibody‐mediated rejection. Transplantation. 2009; 87 ( 2 ): 286 ‐ 289.
dc.identifier.citedreferenceCohen S, Emery P, Greenwald M, et al. A phase I pharmacokinetics trial comparing PF‐05280586 (a potential biosimilar) and rituximab in patients with active rheumatoid arthritis. Br J Clin Pharmacol. 2016; 82 ( 1 ): 129 ‐ 138.
dc.identifier.citedreferenceMulcahy AW, Hlavka JP, Case SR. Biosimilar cost savings in the United States: initial experience and future potential. Rand Health Q. 2018; 7 ( 4 ): 3.
dc.identifier.citedreferencehttps://www1.magellanrx.com/documents/2019/03/medical‐pharmacy‐trend‐report_2018.pdf/. Accessed 9/6/2020
dc.identifier.citedreferenceLevin AS, Otani IM, Lax T, Hochberg E, Banerji A. Reactions to rituximab in an outpatient infusion center: a 5‐year review. J Allergy Clin Immunol Pract. 2017; 5 ( 1 ): 107 ‐ 113.e1. https://doi.org/10.1016/j.jaip.2016.06.022. Epub 2016 Aug 3. PMID: 27497683
dc.identifier.citedreferenceKeshvani N, Hon M, Gupta A, et al. Reducing hospitalizations: institution of outpatient infusional EPOCH‐Based chemotherapy at a safety net hospital. J Oncol Pract. 2019; 15 ( 8 ): e644 ‐ e651. https://doi.org/10.1200/JOP.18.00738. Epub 2019 Jun 17 PMID: 31206340
dc.identifier.citedreferenceJorgenson MR, Descourouez JL, Brady BL, et al. Alternatives to immediate release tacrolimus in solid organ transplant recipients: When the gold standard is in short supply. Clin Transplant. 2020; 34 ( 7 ): e13903. https://doi.org/10.1111/ctr.13903. Epub 2020 May 29. PMID: 32400907
dc.identifier.citedreferenceHanaway MJ, Woodle ES, Mulgaonkar S, et al. Alemtuzumab induction in renal transplantation. N Engl J Med. 2011; 364 ( 20 ): 1909 ‐ 1919.
dc.identifier.citedreferencePinson CW, Feurer ID, Payne JL, Wise PE, Shockley S, Speroff T. Health‐related quality of life after different types of solid organ transplantation. Ann Surg. 2000; 232 ( 4 ): 597 ‐ 607. https://doi.org/10.1097/00000658‐200010000‐00015
dc.identifier.citedreferenceAxelrod DA, Schnitzler MA, Xiao H, et al. An economic assessment of contemporary kidney transplant practice. Am J Transplant. 2018; 18 ( 5 ): 1168 ‐ 1176. https://doi.org/10.1111/ajt.14702
dc.identifier.citedreferenceJames A, Mannon RB. The cost of transplant immunosuppressant therapy: is this sustainable? Curr Transplant Rep. 2015; 2 ( 2 ): 113 ‐ 121. https://doi.org/10.1007/s40472‐015‐0052‐y
dc.identifier.citedreferenceGharibi Z, Ayvaci MUS, Hahsler M, Giacoma T, Gaston RS, Tanriover B. Cost‐effectiveness of antibody‐based induction therapy in deceased donor kidney transplantation in the United States. Transplantation. 2017; 101 ( 6 ): 1234 ‐ 1241. https://doi.org/10.1097/TP.0000000000001310
dc.identifier.citedreferenceWebster AC, Ruster LP, McGee R, et al. Interleukin 2 receptor antagonists for kidney transplant recipients. Cochrane Database of Syst Rev. 2010;( 1 ): CD003897. https://doi.org/10.1002/14651858.CD003897.pub3
dc.identifier.citedreferenceSimulect. Package insert. East Hanover, NJ: Novartis Pharmaceuticals Corporation; 2020.
dc.identifier.citedreferenceLorber MI, Fastenau J, Wilson D, DiCesare J, Hall ML. A prospective economic evaluation of basiliximab (Simulect) therapy following renal transplantation. Clin Transplant. 2000; 14 ( 5 ): 479 ‐ 485. https://doi.org/10.1034/j.1399‐0012.2000.140506.x. PMID: 11048993
dc.identifier.citedreferenceGuerra G, Ciancio G, Gaynor JJ, et al. Randomized trial of immunosuppressive regimens in renal transplantation. J Am Soc Nephrol. 2011; 9: 1758 ‐ 1768.
dc.identifier.citedreferenceAmlot PL, Rawlings E, Fernando ON, et al. Prolonged action of a chimeric interleukin‐2 receptor (CD25) monoclonal antibody used in cadaveric renal transplantation. Transplantation. 1995; 60: 748 ‐ 756 4.
dc.identifier.citedreferenceKovarik JM, Rawlings E, Sweny P, et al. Pharmacokinetics and immunodynamics of chimeric IL‐2 receptor monoclonal antibody SDZ CHI 621 in renal allograft recipients. Transpl Int. 1996; 9 ( Suppl 1 ): S32 ‐ S33. 5.
dc.identifier.citedreferenceMehra M, Zucker MJ, Wagoner L. Multicenter, prospective, randomized, double‐blind trial of basiliximab in heart transplantation. J Heart Lung Transplant. 2005; 24: 1297 ‐ 1304.
dc.identifier.citedreferenceCunningham KC, Hager DR, Fischer J, et al. Single‐dose basiliximab induction in low‐risk renal transplant recipients. Pharmacotherapy. 2016; 36 ( 7 ): 823 ‐ 829. https://doi.org/10.1002/phar.1774
dc.identifier.citedreferenceBaquero A, Pérez J, Rizik N, et al. Basiliximab: a comparative study between the use of the recommended two doses versus a single dose in living donor kidney transplantation. Transplant Proc. 2006; 38 ( 3 ): 909 ‐ 910. https://doi.org/10.1016/j.transproceed.2006.02.052
dc.identifier.citedreferenceRichards KR, Hager D, Muth B, Astor BC, Kaufman D, Djamali A. Tacrolimus trough level at discharge predicts acute rejection in moderately sensitized renal transplant recipients. Transplantation. 2014; 97 ( 10 ): 986 ‐ 991. https://doi.org/10.1097/TP.0000000000000149
dc.identifier.citedreferenceKittipibul V, Tantrachoti P, Ongcharit P. Low‐dose basiliximab induction therapy in heart transplantation. Clin Transpl. 2017; 31 ( 12 ): e13132.
dc.identifier.citedreferenceMcAdams‐DeMarco MA, King EA, Luo X, et al. Frailty, length of stay, and mortality in kidney transplant recipients: a national registry and prospective cohort study. Ann Surg. 2017; 266 ( 6 ): 1084 ‐ 1090. https://doi.org/10.1097/SLA.0000000000002025
dc.identifier.citedreferenceAlloway RR, Woodle ES, Abramowicz D, et al. Rabbit anti‐thymocyte globulin for the prevention of acute rejection in kidney transplantation. Am J Transpl. 2019; 19: 2252 ‐ 2261.
dc.identifier.citedreferenceGurk‐Turner C, Airee R, Philosophe B, Kukuruga D, Drachenberg C, Haririan A. Thymoglobulin dose optimization for induction therapy in high risk kidney transplant recipients. Transplantation. 2008; 85 ( 10 ): 1425 ‐ 1430. https://doi.org/10.1097/TP.0b013e31816dd596. PMID: 18497682
dc.identifier.citedreferenceSingh N, Rossi AP, Savic M, Rubocki RJ, Parker MG, Vella JP. Tailored rabbit antithymocyte globulin induction dosing for kidney transplantation. Transpl Direct. 2018; 4 e: 343.
dc.identifier.citedreferenceWong W, Agrawal N, Pascual M, et al. Comparison of two dosages of thymoglobulin used as a short‐course for induction in kidney transplantation. Transplant Int. 2006; 19: 629 ‐ 635.
dc.identifier.citedreferenceKlem P, Cooper JE, Weiss AS, et al. Reduced dose rabbit anti‐thymocyte globulin induction for prevention of acute rejection in high‐risk kidney transplant recipients. Transplantation. 2009; 88: 891 ‐ 896.
dc.identifier.citedreferenceMachado FP, Vicari AR, Spuldaro F, Castro Filho JBS, Manfro RC. Polyclonal anti T‐lymphocyte antibody therapy monitoring in kidney transplant recipients: comparison of CD3+ T cell and total lymphocyte counts. Einstein (Sao Paulo). 2018; 16 ( 4 ): eAO4278. https://doi.org/10.31744/einstein_journal/2018AO4278. PMID: 30517367; PMCID: PMC6276809
dc.identifier.citedreferenceVarga AN, Johnson D, Sawinski DL, et al. Safety and feasibility of outpatient rabbit antithymocyte globulin induction therapy administration in kidney transplant recipients. Pharmacotherapy. 2018; 38: 620 ‐ 627.
dc.identifier.citedreferencePeddi VR, Bryant M, Roy‐Chaudhury P, Woodle ES, First MR. Safety, efficacy, and cost analysis of thymoglobulin induction therapy with intermittent dosing based on CD3+ lymphocyte counts in kidney and kidney‐pancreas transplant recipients. Transplantation. 2002; 73 ( 9 ): 1514 ‐ 1518.
dc.identifier.citedreferenceDjamali A, Turc‐Baron C, Portales P, et al. Low dose antithymocyte globulins in renal transplantation: daily versus intermittent administration based on T‐cell monitoring. Transplantation. 2000; 69 ( 5 ): 799 ‐ 805.
dc.identifier.citedreferenceUber WE, Uber LA, VanBakel AB, et al. CD3 monitoring and thymoglobulin therapy in cardiac transplantation: clinical outcomes and pharmacoeconomic implications. Transplant Proc. 2004; 36 ( 10 ): 3245 ‐ 3249.
dc.identifier.citedreferenceThymoglobulin [Package Insert]. Cambridge, MA, Genzyme Corporation, 2020.
dc.identifier.citedreferenceBunn D, Lea CK, Bevan DJ, Higgins RM, Hendry BM. The pharmacokinetics of anti‐thymocyte globulin (ATG) following intravenous infusion in man. Clin Nephrol. 1996; 45 ( 1 ): 29 ‐ 32.
dc.identifier.citedreferenceVacha M, Gommer J, Rege A, Sanoff S, Sudan D, Harris M. Effects of ideal versus total body weight dosage of rabbit antithymocyte globulin on outcomes of kidney transplant patients with high immunologic risk. Exp Clin Transpl. 2016; 5: 511 ‐ 517.
dc.identifier.citedreferenceCurran SP, Famure O, Li Y, Kim SJ. Increased recipient body mass index is associated with acute rejection and other adverse outcomes after kidney transplantation. Transplantation. 2014; 97 ( 1 ): 64 ‐ 70.
dc.identifier.citedreferenceMiller R, Meadows H, Strout S, et al. Safety, Efficacy, and Cost Saving Potential of Various Weight‐Based Dosing for Thymoglobulin Induction Therapy in Kidney Transplant Recipients. [abstract]. Am J Transplant. 2016; 16 ( suppl 3 ). https://atcmeetingabstracts.com/abstract/safety‐efficacy‐and‐cost‐saving‐potential‐of‐various‐weight‐based‐dosing‐for‐thymoglobulin‐induction‐therapy‐in‐kidney‐transplant‐recipients/. Accessed November 30, 2020
dc.identifier.citedreferenceTsapepas D, Mohan S, Tanriover B, et al. Impact of small variations in the delivered dose of rabbit antithymocyte induction therapy in kidney transplantation with early corticosteroid withdrawal. Transpl J. 2012; 94 ( 4 ): 325 ‐ 330. https://doi.org/10.1097/tp.0b013e318257ad1a
dc.identifier.citedreferencePennington C, Tischer S, Lee E, Lee S, Sindelar J, Park J. Evaluation of a weight‐based rabbit anti‐thymocyte globulin induction dosing regimen for kidney transplant recipients. Pharmacother J Human Pharmacol Drug Ther. 2015; 35 ( 8 ): 748 ‐ 754. https://doi.org/10.1002/phar.1624
dc.identifier.citedreferenceTrofe‐Clark J, Reese P, Patel H, et al. Efficacy and safety of extended‐duration inpatient‐to‐outpatient rabbit antithymocyte globulin induction in de novo kidney transplant recipients. Transpl J. 2012; 94 ( 5 ): 506 ‐ 512. https://doi.org/10.1097/tp.0b013e31825c58c0
dc.identifier.citedreferenceAgha IA, Rueda J, Alvarez A, et al. Short course induction immunosuppression with thymoglobulin for renal transplant recipients. Transplantation. 2002; 73 ( 3 ): 473 ‐ 475. https://doi.org/10.1097/00007890‐200202150‐00025. PMID: 11884948
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.