Show simple item record

Jupiter’s Temperate Belt/Zone Contrasts Revealed at Depth by Juno Microwave Observations

dc.contributor.authorFletcher, L. N.
dc.contributor.authorOyafuso, F. A.
dc.contributor.authorAllison, M.
dc.contributor.authorIngersoll, A.
dc.contributor.authorLi, L.
dc.contributor.authorKaspi, Y.
dc.contributor.authorGalanti, E.
dc.contributor.authorWong, M. H.
dc.contributor.authorOrton, G. S.
dc.contributor.authorDuer, K.
dc.contributor.authorZhang, Z.
dc.contributor.authorLi, C.
dc.contributor.authorGuillot, T.
dc.contributor.authorLevin, S. M.
dc.contributor.authorBolton, S.
dc.date.accessioned2021-11-02T00:45:02Z
dc.date.available2022-11-01 20:45:00en
dc.date.available2021-11-02T00:45:02Z
dc.date.issued2021-10
dc.identifier.citationFletcher, L. N.; Oyafuso, F. A.; Allison, M.; Ingersoll, A.; Li, L.; Kaspi, Y.; Galanti, E.; Wong, M. H.; Orton, G. S.; Duer, K.; Zhang, Z.; Li, C.; Guillot, T.; Levin, S. M.; Bolton, S. (2021). "Jupiter’s Temperate Belt/Zone Contrasts Revealed at Depth by Juno Microwave Observations." Journal of Geophysical Research: Planets 126(10): n/a-n/a.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/170803
dc.description.abstractJuno microwave radiometer (MWR) observations of Jupiter’s midlatitudes reveal a strong correlation between brightness temperature contrasts and zonal winds, confirming that the banded structure extends throughout the troposphere. However, the microwave brightness gradient is observed to change sign with depth: the belts are microwave‐bright in the p<5 bar range and microwave‐dark in the p>10 bar range. The transition level (which we call the “jovicline”) is evident in the MWR 11.5 cm channel, which samples the 5–14 bar range when using the limb‐darkening at all emission angles. The transition is located between 4 and 10 bars, and implies that belts change with depth from being NH3‐depleted to NH3‐enriched, or from physically warm to physically cool, or more likely a combination of both. The change in character occurs near the statically stable layer associated with water condensation. The implications of the transition are discussed in terms of ammonia redistribution via meridional circulation cells with opposing flows above and below the water condensation layer, and in terms of the “mushball” precipitation model, which predicts steeper vertical ammonia gradients in the belts versus the zones. We show via the moist thermal wind equation that both the temperature and ammonia interpretations can lead to vertical shear on the zonal winds, but the shear is ∼50× weaker if only NH3 gradients are considered. Conversely, if MWR observations are associated with kinetic temperature gradients then it would produce zonal winds that increase in strength down to the “jovicline”, consistent with Galileo probe measurements; then decay slowly at higher pressures.Plain Language SummaryOne of the core scientific questions for NASA’s Juno mission was to explore how Jupiter’s famous banded structure might change below the top‐most clouds. Did the alternating bands of temperatures, winds, composition, and clouds simply represent the top of a much deeper circulation pattern? Juno’s microwave radiometer is capable of peering through the clouds to reveal structures extending to great depths, and has revealed a surprise: belts and zones do persist to pressures of 100 bars or more, but they flip their character at a level which we call the “jovicline,” coinciding with the depths at which water clouds are expected to form and generate a stable layer. This transition from microwave‐bright belts (ammonia depleted and/or physically warm) in the upper layers, to microwave‐dark belts (ammonia enriched or physically cool) in the deeper layers, and vice versa for the zones, may have implications for the shear on the Jupiter’s zonal winds, indicating winds that strengthen with depth down to the jovicline, before decaying slowly at higher pressures. The origins of the transition is explored in terms of meridional circulations that change with depth, and in terms of models where strong precipitation dominates in the belts.Key PointsBanded structure of Jupiter’s microwave brightness is correlated with the cloud‐top winds as far down as 100 barsBelt/zone contrasts flip sign in the 5–10 bar region, a transition layer coinciding with the water condensation levelTransition can be explained by stacked meridional circulation cells and/or latitudinal gradients in precipitation
dc.publisherHarcourt Brace Jovanovich, Inc
dc.publisherWiley Periodicals, Inc.
dc.subject.othermicrowave
dc.subject.otherdynamics
dc.subject.othermeteorology
dc.subject.otherJuno
dc.subject.otheratmospheres
dc.subject.otherJupiter
dc.titleJupiter’s Temperate Belt/Zone Contrasts Revealed at Depth by Juno Microwave Observations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170803/1/jgre21703_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170803/2/jgre21703.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170803/3/2021JE006858-sup-0001-Supporting_Information_SI-S01.pdf
dc.identifier.doi10.1029/2021JE006858
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferenceMagalhães, J. A., Seiff, A., & Young, R. E. ( 2002 ). The stratification of Jupiter’s troposphere at the Galileo probe entry site. Icarus, 158, 410 – 433. https://doi.org/10.1006/icar.2002.6891
dc.identifier.citedreferenceLimaye, S. S. ( 1986 ). Jupiter—New estimates of the mean zonal flow at the cloud level. Icarus, 65, 335 – 352. https://doi.org/10.1016/0019-1035(86)90142-9
dc.identifier.citedreferenceLittle, B., Anger, C. D., Ingersoll, A. P., Vasavada, A. R., Senske, D. A., Breneman, H. H., et al. ( 1999 ). Galileo images of lightning on Jupiter. Icarus, 142, 306 – 323. https://doi.org/10.1006/icar.1999.6195
dc.identifier.citedreferenceLiu, J., Goldreich, P. M., & Stevenson, D. J. ( 2008 ). Constraints on deep‐seated zonal winds inside Jupiter and Saturn. Icarus, 196, 653 – 664. https://doi.org/10.1016/j.icarus.2007.11.036
dc.identifier.citedreferenceLiu, J., & Schneider, T. ( 2010 ). Mechanisms of jet formation on the giant planets. Journal of the Atmospheric Sciences, 67, 3652 – 3672. https://doi.org/10.1175/2010JAS3492.1
dc.identifier.citedreferenceLunine, J. I., & Hunten, D. M. ( 1987 ). Moist convection and the abundance of water in the troposphere of Jupiter. Icarus, 69 ( 3 ), 566 – 570. https://doi.org/10.1016/0019-1035(87)90025-X
dc.identifier.citedreferenceOrsolini, Y., & Leovy, C. B. ( 1993 ). A model of large‐scale instabilities in the Jovian troposphere. 1. Linear model. Icarus, 106 ( 2 ), 392 – 405. https://doi.org/10.1006/icar.1993.1180
dc.identifier.citedreferenceOrtiz, J. L., Orton, G. S., Friedson, A. J., Stewart, S. T., Fisher, B. M., & Spencer, J. R. ( 1998 ). Evolution and persistence of 5‐μm hot spots at the Galileo probe entry latitude. Journal of Geophysical Research, 103, 23051 – 23069. https://doi.org/10.1029/98JE00696
dc.identifier.citedreferenceOyafuso, F., Levin, S., Orton, G., Brown, S. T., Adumitroaie, V., Janssen, M., et al. ( 2020 ). Angular dependence and spatial distribution of Jupiter’s centimeter‐wave thermal emission from Juno’s microwave radiometer. Earth and Space Science, 7 ( 11 ), e01254. https://doi.org/10.1029/2020EA001254
dc.identifier.citedreferencePirraglia, J. A. ( 1989 ). Dissipationless decay of Jovian jets. Icarus, 79, 196 – 207. https://doi.org/10.1016/0019-1035(89)90116-4
dc.identifier.citedreferencePirraglia, J. A., Conrath, B. J., Allison, M. D., & Gierasch, P. J. ( 1981 ). Thermal structure and dynamics of Saturn and Jupiter. Nature, 292 ( 5825 ), 677 – 679. https://doi.org/10.1038/292677a0
dc.identifier.citedreferencePorco, C. C., West, R. A., McEwen, A., Del Genio, A. D., Ingersoll, A. P., Thomas, P., et al. ( 2003 ). Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science, 299, 1541 – 1547. https://doi.org/10.1126/science.1079462
dc.identifier.citedreferenceRead, P., Gierasch, P., Conrath, B., Simon‐Miller, A., Fouchet, T., & Yamazaki, Y. ( 2006 ). Mapping potential‐vorticity dynamics on Jupiter. I: Zonal‐mean circulation from Cassini and Voyager 1 data. Quarterly Journal of the Royal Meteorological Society, 132, 1577 – 1603. https://doi.org/10.1256/qj.05.34
dc.identifier.citedreferenceSalyk, C., Ingersoll, A., Lorre, J., Vasavada, A., & Del Genio, A. ( 2006 ). Interaction between eddies and mean flow in Jupiter’s atmosphere: Analysis of Cassini imaging data. Icarus, 185 ( 2 ), 430 – 442. https://doi.org/10.1016/j.icarus.2006.08.007
dc.identifier.citedreferenceSánchez‐Lavega, A., Orton, G. S., Hueso, R., García‐Melendo, E., Pérez‐Hoyos, S., Simon‐Miller, A., et al. ( 2008 ). Depth of a strong Jovian jet from a planetary‐scale disturbance driven by storms. Nature, 451, 437 – 440. https://doi.org/10.1038/nature06533
dc.identifier.citedreferenceSánchez‐Lavega, A., Rogers, J. H., Orton, G. S., García‐Melendo, E., Legarreta, J., Colas, F., et al. ( 2017 ). A planetary‐scale disturbance in the most intense Jovian atmospheric jet from JunoCam and ground‐based observations. Geophysical Research Letters, 44, 4679 – 4686. https://doi.org/10.1002/2017GL073421
dc.identifier.citedreferenceSeiff, A., Kirk, D. B., Knight, T. C. D., Young, R. E., Mihalov, J. D., Young, L. A., et al. ( 1998 ). Thermal structure of Jupiter’s atmosphere near the edge of a 5‐μm hot spot in the north equatorial belt. Journal of Geophysical Research, 103, 22857 – 22889. https://doi.org/10.1029/98JE01766
dc.identifier.citedreferenceShowman, A. P., & de Pater, I. ( 2005 ). Dynamical implications of Jupiter’s tropospheric ammonia abundance. Icarus, 174, 192 – 204. https://doi.org/10.1016/j.icarus.2004.10.004
dc.identifier.citedreferenceShowman, A. P., & Dowling, T. E. ( 2000 ). Nonlinear simulations of Jupiter’s 5‐micron hot spots. Science, 289, 1737 – 1740. https://doi.org/10.1126/science.289.5485.1737
dc.identifier.citedreferenceShowman, A. P., Gierasch, P. J., & Lian, Y. ( 2006 ). Deep zonal winds can result from shallow driving in a giant‐planet atmosphere. Icarus, 182, 513 – 526. https://doi.org/10.1016/j.icarus.2006.01.019
dc.identifier.citedreferenceSimon‐Miller, A. A., Conrath, B. J., Gierasch, P. J., Orton, G. S., Achterberg, R. K., Flasar, F. M., & Fisher, B. M. ( 2006 ). Jupiter’s atmospheric temperatures: From Voyager IRIS to Cassini CIRS. Icarus, 180, 98 – 112. https://doi.org/10.1016/j.icarus.2005.07.019
dc.identifier.citedreferenceSpiga, A., Guerlet, S., Millour, E., Indurain, M., Meurdesoif, Y., Cabanes, S., et al. ( 2020 ). Global climate modeling of Saturn’s atmosphere. Part II: Multi‐annual high‐resolution dynamical simulations. Icarus, 335, 113377. https://doi.org/10.1016/j.icarus.2019.07.011
dc.identifier.citedreferenceStone, P. H. ( 1976 ). The meteorology of the Jovian atmosphere. In T. Gehrels, & S. Matthews (Eds.), IAU colloq. 30: Jupiter: Studies of the interior, atmosphere, magnetosphere and satellites (pp. 586 – 618 ).
dc.identifier.citedreferenceSugiyama, K., Nakajima, K., Odaka, M., Kuramoto, K., & Hayashi, Y.‐Y. ( 2014 ). Numerical simulations of Jupiter’s moist convection layer: Structure and dynamics in statistically steady states. Icarus, 229, 71 – 91. https://doi.org/10.1016/j.icarus.2013.10.016
dc.identifier.citedreferenceSun, Z.‐P., Schubert, G., & Stoker, C. R. ( 1991 ). Thermal and humidity winds in outer planet atmospheres. Icarus, 91 ( 1 ), 154 – 160. https://doi.org/10.1016/0019-1035(91)90134-F
dc.identifier.citedreferenceThomson, S. I., & McIntyre, M. E. ( 2016 ). Jupiter’s unearthly jets: A new turbulent model exhibiting statistical steadiness without large‐scale dissipation. Journal of the Atmospheric Sciences, 73, 1119 – 1141. https://doi.org/10.1175/JAS-D-14-0370.1
dc.identifier.citedreferenceTollefson, J., Wong, M. H., de Pater, I., Simon, A. A., Orton, G. S., Rogers, J. H., et al. ( 2017 ). Changes in Jupiter’s Zonal Wind Profile preceding and during the Juno mission. Icarus, 296, 163 – 178. https://doi.org/10.1016/j.icarus.2017.06.007
dc.identifier.citedreferenceVallis, G. K. ( 2006 ). Atmospheric and oceanic fluid dynamics. https://doi.org/10.2277/0521849691
dc.identifier.citedreferencevon Zahn, U., Hunten, D. M., & Lehmacher, G. ( 1998 ). Helium in Jupiter’s atmosphere: Results from the Galileo probe helium interferometer experiment. Journal of Geophysical Research, 103 ( 12 ), 22815 – 22829. https://doi.org/10.1029/98JE00695
dc.identifier.citedreferenceWeidenschilling, S. J., & Lewis, J. S. ( 1973 ). Atmospheric and cloud structures of the Jovian planets. Icarus, 20, 465 – 476. https://doi.org/10.1016/0019-1035(73)90019-5
dc.identifier.citedreferenceWest, R., Baines, K., Friedson, A., Banfield, D., Ragent, B., & Taylor, F. ( 2004 ). Jupiter: The planet, satellites and magnetosphere (pp. 79 – 104 ).
dc.identifier.citedreferenceWong, M. H. ( 2009 ). Comment on “Transport of nonmethane hydrocarbons to Jupiter’s troposphere by descent of smog particles” by Donald M. Hunten [Icarus 194 (2008) 616 622]. Icarus, 199, 231 – 235. https://doi.org/10.1016/j.icarus.2008.08.017
dc.identifier.citedreferenceWong, M. H., Mahaffy, P., Atreya, S., Niemann, H., & Owen, T. ( 2004 ). Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus, 171 ( 1 ), 153 – 170. https://doi.org/10.1016/j.icarus.2004.04.010
dc.identifier.citedreferenceWong, M. H., Simon, A. A., Tollefson, J. W., de Pater, I., Barnett, M. N., Hsu, A. I., et al. ( 2020 ). High‐resolution UV/Optical/IR Imaging of Jupiter in 2016‐2019. Astrophysical Journal Supplement, 247 ( 2 ), 58. https://doi.org/10.3847/1538-4365/ab775f
dc.identifier.citedreferenceYamazaki, Y. H., Read, P. L., & Skeet, D. R. ( 2005 ). Hadley circulations and Kelvin wave‐driven equatorial jets in the atmospheres of Jupiter and Saturn. Planetary and Space Science, 53, 508 – 525. https://doi.org/10.1016/j.pss.2004.03.009
dc.identifier.citedreferenceYoung, R. M., Read, P. L., & Wang, Y. ( 2018 ). Simulating Jupiter’s weather layer. Part I: Jet spin‐up in a dry atmosphere. Icarus. https://doi.org/10.1016/j.icarus.2018.12.005
dc.identifier.citedreferenceZuchowski, L. C., Yamazaki, Y. H., & Read, P. L. ( 2009 ). Modeling Jupiter’s cloud bands and decks. 1. Jet scale meridional circulations. Icarus, 200, 548 – 562. https://doi.org/10.1016/j.icarus.2008.11.024
dc.identifier.citedreferenceAchterberg, R. K., Conrath, B. J., & Gierasch, P. J. ( 2006 ). Cassini CIRS retrievals of ammonia in Jupiter’s upper troposphere. Icarus, 182, 169 – 180. https://doi.org/10.1016/j.icarus.2005.12.020
dc.identifier.citedreferenceAllison, M. ( 1990 ). Planetary waves in Jupiter’s equatorial atmosphere. Icarus, 83, 282 – 307. https://doi.org/10.1016/0019-1035(90)90069-L
dc.identifier.citedreferenceAllison, M., & Atkinson, D. H. ( 2001 ). Galileo Probe Doppler residuals as the wave‐dynamical signature of weakly stable, downward‐increasing stratification in Jupiter’s deep wind layer. Geophysical Research Letters, 28, 2747 – 2750. https://doi.org/10.1029/2001GL012927
dc.identifier.citedreferenceAntuñano, A., Fletcher, L. N., Orton, G. S., Melin, H., Milan, S., Rogers, J., et al. ( 2019 ). Jupiter’s atmospheric variability from long‐term ground‐based observations at 5 μm. Astronomical Journal, 158 ( 3 ), 130. https://doi.org/10.3847/1538-3881/ab2cd6
dc.identifier.citedreferenceAtkinson, D. H. ( 2001 ). The Galileo Jupiter Probe Doppler wind experiment. Solar System Research, 35 ( 5 ), 354 – 375. https://doi.org/10.1023/a:1012348103693
dc.identifier.citedreferenceAtkinson, D. H., Pollack, J. B., & Seiff, A. ( 1998 ). The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter. Journal of Geophysical Research, 103, 22911 – 22928. https://doi.org/10.1029/98JE00060
dc.identifier.citedreferenceAtreya, S. K., Wong, M. H., Owen, T. C., Mahaffy, P. R., Niemann, H. B., de Pater, I., et al. ( 1999 ). A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin. Planetary and Space Science, 47, 1243 – 1262. https://doi.org/10.1016/s0032-0633(99)00047-1
dc.identifier.citedreferenceAurnou, J., Heimpel, M., Allen, L., King, E., & Wicht, J. ( 2008 ). Convective heat transfer and the pattern of thermal emission on the gas giants. Geophysical Journal International, 173 ( 3 ), 793 – 801. https://doi.org/10.1111/j.1365-246X.2008.03764.x
dc.identifier.citedreferenceBaines, K. H., Simon‐Miller, A. A., Orton, G. S., Weaver, H. A., Lunsford, A., Momary, T. W., et al. ( 2007 ). Polar lightning and decadal‐scale cloud variability on Jupiter. Science, 318, 226 – 229. https://doi.org/10.1126/science.1147912
dc.identifier.citedreferenceBecker, H. N., Alexander, J. W., Atreya, S. K., Bolton, S. J., Brennan, M. J., Brown, S. T., et al. ( 2020 ). Small lightning flashes from shallow electrical storms on Jupiter. Nature, 584 ( 7819 ), 55 – 58. https://doi.org/10.1038/s41586-020-2532-1
dc.identifier.citedreferenceBellotti, A., Steffes, P. G., & Chinsomboom, G. ( 2016 ). Laboratory measurements of the 5‐20 cm wavelength opacity of ammonia, water vapor, and methane under simulated conditions for the deep jovian atmosphere. Icarus, 280, 255 – 267. https://doi.org/10.1016/j.icarus.2016.07.013
dc.identifier.citedreferenceBolton, S. J., Adriani, A., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S., et al. ( 2017 ). Jupiter’s interior and deep atmosphere: The initial pole‐to‐pole passes with the Juno spacecraft. Science, 356, 821 – 825. https://doi.org/10.1126/science.aal2108
dc.identifier.citedreferenceBrown, S., Janssen, M., Adumitroaie, V., Atreya, S., Bolton, S., Gulkis, S., et al. ( 2018 ). Prevalent lightning sferics at 600 megahertz near Jupiter’s poles. Nature, 558, 87 – 90. https://doi.org/10.1038/s41586-018-0156-5
dc.identifier.citedreferenceBuccino, D. R., Helled, R., Parisi, M., Hubbard, W. B., & Folkner, W. M. ( 2020 ). Updated equipotential shapes of Jupiter and Saturn using Juno and Cassini grand finale gravity science measurements. Journal of Geophysical Research: Planets, 125 ( 8 ), e06354. https://doi.org/10.1029/2019JE006354
dc.identifier.citedreferenceCao, H., & Stevenson, D. J. ( 2017 ). Zonal flow magnetic field interaction in the semi‐conducting region of giant planets. Icarus, 296, 59 – 72. https://doi.org/10.1016/j.icarus.2017.05.015
dc.identifier.citedreferenceClarke, A. C. ( 1972 ). The wind from the sun. Harcourt Brace Jovanovich, Inc.
dc.identifier.citedreferenceConrath, B. J., Gierasch, P. J., & Leroy, S. S. ( 1990 ). Temperature and circulation in the stratosphere of the outer planets. Icarus, 83, 255 – 281. https://doi.org/10.1016/0019-1035(90)90068-K
dc.identifier.citedreferenceConrath, B. J., Gierasch, P. J., & Ustinov, E. A. ( 1998 ). Thermal structure and para hydrogen fraction on the outer planets from Voyager IRIS measurements. Icarus, 135, 501 – 517. https://doi.org/10.1006/icar.1998.6000
dc.identifier.citedreferenceConrath, B. J., & Pirraglia, J. A. ( 1983 ). Thermal structure of Saturn from Voyager infrared measurements—Implications for atmospheric dynamics. Icarus, 53, 286 – 292. https://doi.org/10.1016/0019-1035(83)90148-3
dc.identifier.citedreferencede Pater, I., Sault, R. J., Butler, B., DeBoer, D., & Wong, M. H. ( 2016 ). Peering through Jupiter’s clouds with radio spectral imaging. Science, 352, 1198 – 1201. https://doi.org/10.1126/science.aaf2210
dc.identifier.citedreferencede Pater, I., Sault, R. J., Moeckel, C., Moullet, A., Wong, M. H., Goullaud, C., et al. ( 2019 ). First ALMA millimeter‐wavelength maps of Jupiter, with a multiwavelength study of convection. Astronomical Journal, 158 ( 4 ), 139. https://doi.org/10.3847/1538-3881/ab3643
dc.identifier.citedreferencede Pater, I., Sault, R. J., Wong, M. H., Fletcher, L. N., DeBoer, D., & Butler, B. ( 2019 ). Jupiter’s ammonia distribution derived from VLA maps at 3‐37 GHz. Icarus, 322, 168 – 191. https://doi.org/10.1016/j.icarus.2018.11.024
dc.identifier.citedreferenceDowling, T. E. ( 1995 ). Estimate of Jupiter’s deep zonal‐wind profile from Shoemaker‐Levy 9 data and Arnol’d’s second stability criterion. Icarus, 117, 439 – 442. https://doi.org/10.1006/icar.1995.1169
dc.identifier.citedreferenceDowling, T. E. ( 2020 ). Jupiter‐style jet stability. The Planetary Science Journal, 1 ( 1 ), 6. https://doi.org/10.3847/PSJ/ab789d
dc.identifier.citedreferenceDowling, T. E., & Ingersoll, A. P. ( 1989 ). Jupiter’s Great Red Spot as a shallow water system. Journal of the Atmospheric Sciences, 46, 3256 – 3278. https://doi.org/10.1175/1520-0469(1989)046<3256:JGRSAA>2.0.CO;2
dc.identifier.citedreferenceDuer, K., Galanti, E., & Kaspi, Y. ( 2020 ). The range of Jupiter’s flow structures that fit the Juno asymmetric gravity measurements. Journal of Geophysical Research: Planets, 125 ( 8 ), e06292. https://doi.org/10.1029/2019JE006292
dc.identifier.citedreferenceFlasar, F. M. ( 1986 ). Global dynamics and thermal structure of Jupiter’s atmosphere. Icarus, 65 ( 2–3 ), 280 – 303. https://doi.org/10.1016/0019-1035(86)90140-5
dc.identifier.citedreferenceFletcher, L. N., de Pater, I., Reach, W. T., Wong, M., Orton, G. S., Irwin, P. G. J., & Gehrz, R. D. ( 2017 ). Jupiter’s para‐H 2 distribution from SOFIA/FORCAST and Voyager/IRIS 17‐37 μm spectroscopy. Icarus, 286, 223 – 240. https://doi.org/10.1016/j.icarus.2016.10.002
dc.identifier.citedreferenceFletcher, L. N., Greathouse, T. K., Orton, G. S., Sinclair, J. A., Giles, R. S., Irwin, P. G. J., & Encrenaz, T. ( 2016 ). Mid‐infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES. Icarus, 278, 128 – 161. https://doi.org/10.1016/j.icarus.2016.06.008
dc.identifier.citedreferenceFletcher, L. N., Kaspi, Y., Guillot, T., & Showman, A. P. ( 2020 ). How well do we understand the belt/zone circulation of giant planet atmospheres? Space Science Reviews, 216 ( 2 ), 30. https://doi.org/10.1007/s11214-019-0631-9
dc.identifier.citedreferenceFletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. ( 2017 ). Moist convection and the 2010‐2011 revival of Jupiter’s South Equatorial Belt. Icarus, 286, 94 – 117. https://doi.org/10.1016/j.icarus.2017.01.001
dc.identifier.citedreferenceFletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. ( 2009 ). Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202, 543 – 564. https://doi.org/10.1016/j.icarus.2009.03.023
dc.identifier.citedreferenceGalanti, E., & Kaspi, Y. ( 2021 ). Combined magnetic and gravity measurements probe the deep zonal flows of the gas giants. Monthly Notices of the Royal Astronomical Society, 501 ( 2 ), 2352 – 2362. https://doi.org/10.1093/mnras/staa3722
dc.identifier.citedreferenceGalanti, E., Kaspi, Y., Duer, K., Fletcher, L., Ingersoll, A. P., Li, C., et al. ( 2021 ). Constraints on the latitudinal profile of Jupiter’s deep jets. Geophysical Research Letters, 48, e2021GL092912. https://doi.org/10.1029/2021GL092912
dc.identifier.citedreferenceGierasch, P. J., Ingersoll, A. P., Banfield, D., Ewald, S. P., Helfenstein, P., Simon‐Miller, A., et al. ( 2000 ). Observation of moist convection in Jupiter’s atmosphere. Nature, 403, 628 – 630. https://doi.org/10.1038/35001017
dc.identifier.citedreferenceGierasch, P. J., Magalhaes, J. A., & Conrath, B. J. ( 1986 ). Zonal mean properties of Jupiter’s upper troposphere from Voyager infrared observations. Icarus, 67, 456 – 483. https://doi.org/10.1016/0019-1035(86)90125-9
dc.identifier.citedreferenceGiles, R. S., Fletcher, L. N., & Irwin, P. G. J. ( 2017 ). Latitudinal variability in Jupiter’s tropospheric disequilibrium species: GeH 4, AsH 3 and PH 3. Icarus, 289, 254 – 269. https://doi.org/10.1016/j.icarus.2016.10.023
dc.identifier.citedreferenceGrassi, D., Adriani, A., Mura, A., Atreya, S. K., Fletcher, L. N., Lunine, J. I., et al. ( 2020 ). On the spatial distribution of minor species in Jupiter’s troposphere as inferred from Juno JIRAM data. Journal of Geophysical Research: Planets, 125 ( 4 ), e06206. https://doi.org/10.1029/2019JE006206
dc.identifier.citedreferenceGuillot, T., Li, C., Bolton, S. J., Brown, S. T., Ingersoll, A. P., Janssen, M. A., et al. ( 2020 ). Storms and the depletion of ammonia in Jupiter: II. Explaining the Juno observations. Journal of Geophysical Research: Planets, 125 ( 8 ), e06404. https://doi.org/10.1029/2020JE006404
dc.identifier.citedreferenceGuillot, T., Miguel, Y., Militzer, B., Hubbard, W. B., Kaspi, Y., Galanti, E., et al. ( 2018 ). A suppression of differential rotation in Jupiter’s deep interior. Nature, 555, 227 – 230. https://doi.org/10.1038/nature25775
dc.identifier.citedreferenceGuillot, T., Stevenson, D. J., Atreya, S. K., Bolton, S. J., & Becker, H. N. ( 2020 ). Storms and the depletion of ammonia in Jupiter: I. Microphysics of “mushballs”. Journal of Geophysical Research: Planets, 125 ( 8 ), e06403. https://doi.org/10.1029/2020JE006403
dc.identifier.citedreferenceHanley, T. R., Steffes, P. G., & Karpowicz, B. M. ( 2009 ). A new model of the hydrogen and helium‐broadened microwave opacity of ammonia based on extensive laboratory measurements. Icarus, 202, 316 – 335. https://doi.org/10.1016/j.icarus.2009.02.002
dc.identifier.citedreferenceHeimpel, M., Gastine, T., & Wicht, J. ( 2016 ). Simulation of deep‐seated zonal jets and shallow vortices in gas giant atmospheres. Nature Geoscience, 9 ( 1 ), 19 – 23. https://doi.org/10.1038/ngeo2601
dc.identifier.citedreferenceHeimpel, M., & Gómez Pérez, N. ( 2011 ). On the relationship between zonal jets and dynamo action in giant planets. Geophysical Research Letters, 38 ( 14 ), L14201. https://doi.org/10.1029/2011GL047562
dc.identifier.citedreferenceHess, S. L., & Panofsky, H. A. ( 1951 ). The atmospheres of the other planets. In T. F. Malone (Ed.), Compendium of meteorology (pp. 391 – 398 ). American Meteorological Society. https://doi.org/10.1007/978-1-940033-70-9_34
dc.identifier.citedreferenceHockey, T. ( 1999 ). Galileo’s planet: Observing Jupiter before photography. Institute of Physics Publishing.
dc.identifier.citedreferenceHolton, J. ( 2004 ). An introduction to dynamic meteorology. Academic Press.
dc.identifier.citedreferenceIngersoll, A. P., Adumitroaie, V., Allison, M. D., Atreya, S., Bellotti, A. A., Bolton, S. J., et al. ( 2017 ). Implications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer. Geophysical Research Letters, 44, 7676 – 7685. https://doi.org/10.1002/2017GL074277
dc.identifier.citedreferenceIngersoll, A. P., Beebe, R., Mitchell, J., Garneau, G., Yagi, G., & Muller, J. ( 1981 ). Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images. Journal of Geophysical Research, 86, 8733 – 8743. https://doi.org/10.1029/ja086ia10p08733
dc.identifier.citedreferenceIngersoll, A. P., Gierasch, P. J., Banfield, D., Vasavada, A. R., & Galileo Imaging Team. ( 2000 ). Moist convection as an energy source for the large‐scale motions in Jupiter’s atmosphere. Nature, 403, 630 – 632. https://doi.org/10.1038/35001021
dc.identifier.citedreferenceIngersoll, A. P., Kanamori, H., & Dowling, T. E. ( 1994 ). Atmospheric gravity waves from the impact of comet Shoemaker‐Levy 9 with Jupiter. Geophysical Research Letters, 21 ( 11 ), 1083 – 1086. https://doi.org/10.1029/94GL01057
dc.identifier.citedreferenceIñurrigarro, P., Hueso, R., Legarreta, J., Sánchez‐Lavega, A., Eichstädt, G., Rogers, J. H., et al. ( 2020 ). Observations and numerical modelling of a convective disturbance in a large‐scale cyclone in Jupiter’s South Temperate Belt. Icarus, 336, 113475. https://doi.org/10.1016/j.icarus.2019.113475
dc.identifier.citedreferenceJanssen, M. A., Oswald, J. E., Brown, S. T., Gulkis, S., Levin, S. M., Bolton, S. J., et al. ( 2017 ). MWR: Microwave radiometer for the Juno mission to Jupiter. Space Science Reviews, 213, 139 – 185. https://doi.org/10.1007/s11214-017-0349-5
dc.identifier.citedreferenceKaspi, Y., Flierl, G. R., & Showman, A. P. ( 2009 ). The deep wind structure of the giant planets: Results from an anelastic general circulation model. Icarus, 202 ( 2 ), 525 – 542. https://doi.org/10.1016/j.icarus.2009.03.026
dc.identifier.citedreferenceKaspi, Y., Galanti, E., Hubbard, W. B., Stevenson, D. J., Bolton, S. J., Iess, L., et al. ( 2018 ). Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nature, 555, 223 – 226. https://doi.org/10.1038/nature25793
dc.identifier.citedreferenceKaspi, Y., Galanti, E., Showman, A. P., Stevenson, D. J., Guillot, T., Iess, L., & Bolton, S. J. ( 2020 ). Comparison of the deep atmospheric dynamics of Jupiter and Saturn in light of the Juno and Cassini gravity measurements. Space Science Reviews, 216 ( 5 ), 84. https://doi.org/10.1007/s11214-020-00705-7
dc.identifier.citedreferenceLi, C., & Chen, X. ( 2019 ). Simulating Nonhydrostatic Atmospheres on Planets (SNAP): Formulation, Validation, and Application to the Jovian Atmosphere. The Astrophysical Journal Supplement Series, 240 ( 2 ), 37. https://doi.org/10.3847/1538-4365/aafdaa
dc.identifier.citedreferenceLi, C., Ingersoll, A., Bolton, S., Levin, S., Janssen, M., Atreya, S., et al. ( 2020 ). The water abundance in Jupiter’s equatorial zone. Nature Astronomy, 4, 609 – 616. https://doi.org/10.1038/s41550-020-1009-3
dc.identifier.citedreferenceLi, C., & Ingersoll, A. P. ( 2015 ). Moist convection in hydrogen atmospheres and the frequency of Saturn’s giant storms. Nature Geoscience, 8, 398 – 403. https://doi.org/10.1038/ngeo2405
dc.identifier.citedreferenceLi, C., Ingersoll, A. P., Janssen, M., Levin, S., Bolton, S., Adumitroaie, V., et al. ( 2017 ). The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophysical Research Letters, 44, 5317 – 5325. https://doi.org/10.1002/2017GL073159
dc.identifier.citedreferenceLi, C., Oyafuso, F. A., Brown, S. T., Atreya, S. K., Orton, G., Ingersoll, A. P., & Janssen, M. A. ( 2017 ). How deep is Jupiter’s Great Red Spot? AGU Fall Meeting Abstracts.
dc.identifier.citedreferenceLi, L., Ingersoll, A. P., Vasavada, A. R., Simon‐Miller, A. A., Achterberg, R. K., Ewald, S. P., et al. ( 2006 ). Waves in Jupiter’s atmosphere observed by the Cassini ISS and CIRS instruments. Icarus, 185, 416 – 429. https://doi.org/10.1016/j.icarus.2006.08.005
dc.identifier.citedreferenceLi, L., Ingersoll, A. P., Vasavada, A. R., Simon‐Miller, A. A., Del Genio, A. D., Ewald, S. P., et al. ( 2006 ). Vertical wind shear on Jupiter from Cassini images. Journal of Geophysical Research, 111, 4004. https://doi.org/10.1029/2005JE002556
dc.identifier.citedreferenceLian, Y., & Showman, A. P. ( 2008 ). Deep jets on gas‐giant planets. Icarus, 194, 597 – 615. https://doi.org/10.1016/j.icarus.2007.10.014
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.