Show simple item record

Post‐training stimulation of the right dorsolateral prefrontal cortex impairs working memory training performance

dc.contributor.authorAu, Jacky
dc.contributor.authorKatz, Benjamin
dc.contributor.authorMoon, Austin
dc.contributor.authorTalati, Sheebani
dc.contributor.authorAbagis, Tessa R.
dc.contributor.authorJonides, John
dc.contributor.authorJaeggi, Susanne M.
dc.date.accessioned2021-11-02T00:45:05Z
dc.date.available2022-11-01 20:45:04en
dc.date.available2021-11-02T00:45:05Z
dc.date.issued2021-10
dc.identifier.citationAu, Jacky; Katz, Benjamin; Moon, Austin; Talati, Sheebani; Abagis, Tessa R.; Jonides, John; Jaeggi, Susanne M. (2021). "Post‐training stimulation of the right dorsolateral prefrontal cortex impairs working memory training performance." Journal of Neuroscience Research (10): 2351-2363.
dc.identifier.issn0360-4012
dc.identifier.issn1097-4547
dc.identifier.urihttps://hdl.handle.net/2027.42/170805
dc.description.abstractResearch investigating transcranial direct current stimulation (tDCS) to enhance cognitive training augments both our understanding of its long‐term effects on cognitive plasticity as well as potential applications to strengthen cognitive interventions. Previous work has demonstrated enhancement of working memory training while applying concurrent tDCS to the dorsolateral prefrontal cortex (DLPFC). However, the optimal stimulation parameters are still unknown. For example, the timing of tDCS delivery has been shown to be an influential variable that can interact with task learning. In the present study, we used tDCS to target the right DLPFC while participants trained on a visuospatial working memory task. We sought to compare the relative efficacy of online stimulation delivered during training to offline stimulation delivered either immediately before or afterwards. We were unable to replicate previously demonstrated benefits of online stimulation; however, we did find evidence that offline stimulation delivered after training can actually be detrimental to training performance relative to sham. We interpret our results in light of evidence suggesting a role of the right DLPFC in promoting memory interference, and conclude that while tDCS may be a promising tool to influence the results of cognitive training, more research and an abundance of caution are needed before fully endorsing its use for cognitive enhancement. This work suggests that effects can vary substantially in magnitude and direction between studies, and may be heavily dependent on a variety of intervention protocol parameters such as the timing and location of stimulation delivery, about which our understanding is still nascent.We delivered transcranial direct current stimulation over the right dorsolateral prefrontal cortex before, during, or after working memory training in order to assess the optimal stimulation timing to maximize learning. Although our procedure did not end up eliciting learning benefits, we did find that stimulation immediately after training impaired performance.
dc.publisherWiley Periodicals, Inc.
dc.publisherAcademic Press
dc.subject.otherstimulation timing
dc.subject.othertranscranial direct current stimulation
dc.subject.otheroffline tDCS
dc.subject.othermemory interference
dc.subject.otherconsolidation
dc.subject.othercognitive training
dc.subject.otheronline tDCS
dc.titlePost‐training stimulation of the right dorsolateral prefrontal cortex impairs working memory training performance
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbsecondlevelPsychology
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170805/1/jnr24784_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170805/2/jnr24784.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170805/3/jnr24784-sup-0002-Supinfo2.pdf
dc.identifier.doi10.1002/jnr.24784
dc.identifier.sourceJournal of Neuroscience Research
dc.identifier.citedreferenceRohan, J. G., Carhuatanta, K. A., McInturf, S. M., Miklasevich, M. K., & Jankord, R. ( 2015 ). Modulating hippocampal plasticity with in vivo brain stimulation. Journal of Neuroscience, 35 ( 37 ), 12824 – 12832. https://doi.org/10.1523/JNEUROSCI.2376‐15.2015
dc.identifier.citedreferencePirulli, C., Fertonani, A., & Miniussi, C. ( 2013 ). The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation. Brain Stimulation, 6 ( 4 ), 683 – 689. https://doi.org/10.1016/j.brs.2012.12.005
dc.identifier.citedreferencePodda, M. V., Cocco, S., Mastrodonato, A., Fusco, S., Leone, L., Barbati, S. A., Colussi, C., Ripoli, C., & Grassi, C. ( 2016 ). Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Scientific Reports, 6 ( 1 ), 1 – 19. https://doi.org/10.1038/srep22180
dc.identifier.citedreferencePugin, F., Metz, A. J., Wolf, M., Achermann, P., Jenni, O. G., & Huber, R. ( 2015 ). Local increase of sleep slow wave activity after three weeks of working memory training in children and adolescents. Sleep, 38 ( 4 ), 607 – 614. https://doi.org/10.5665/sleep.4580
dc.identifier.citedreferenceRanieri, F., Podda, M. V., Riccardi, E., Frisullo, G., Dileone, M., Profice, P., Pilato, F., Di Lazzaro, V., & Grassi, C. ( 2012 ). Modulation of LTP at rat hippocampal CA3‐CA1 synapses by direct current stimulation. Journal of Neurophysiology, 107 ( 7 ), 1868 – 1880. https://doi.org/10.1152/jn.00319.2011
dc.identifier.citedreferenceReiman, K. ( 2015 ). Are declarative and procedural working memory functionally analogous? Testing working memory using the task span (Doctoral dissertation), Lehigh University. https://preserve.lehigh.edu/cgi/viewcontent.cgi?article=3780&context=etd
dc.identifier.citedreferenceReis, J., Fischer, J. T., Prichard, G., Weiller, C., Cohen, L. G., & Fritsch, B. ( 2015 ). Time‐ but not sleep‐dependent consolidation of tDCS‐enhanced visuomotor skills. Cerebral Cortex, 25 ( 1 ), 109 – 117. https://doi.org/10.1093/cercor/bht208
dc.identifier.citedreferenceReis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., Celnik, P. A., & Krakauer, J. W. ( 2009 ). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences, 106 ( 5 ), 1590 – 1595. https://doi.org/10.1073/pnas.0805413106
dc.identifier.citedreferenceRichmond, L. L., Wolk, D., Chein, J., & Olson, I. R. ( 2014 ). Transcranial direct current stimulation enhances verbal working memory training performance over time and near transfer outcomes. Journal of Cognitive Neuroscience, 26 ( 11 ), 2443 – 2454. https://doi.org/10.1162/jocn_a_00657
dc.identifier.citedreferenceRobertson, E. M. ( 2012 ). New insights in human memory interference and consolidation. Current Biology, 22 ( 2 ), R66 – R71. https://doi.org/10.1016/j.cub.2011.11.051
dc.identifier.citedreferenceRuf, S. P., Fallgatter, A. J., & Plewnia, C. ( 2017 ). Augmentation of working memory training by transcranial direct current stimulation (tDCS). Scientific Reports, 7 ( 1 ), 876. https://doi.org/10.1038/s41598‐017‐01055‐1
dc.identifier.citedreferenceRumpf, J.‐J., Wegscheider, M., Hinselmann, K., Fricke, C., King, B. R., Weise, D., Klann, J., Binkofski, F., Buccino, G., Karni, A., Doyon, J., & Classen, J. ( 2017 ). Enhancement of motor consolidation by post‐training transcranial direct current stimulation in older people. Neurobiology of Aging, 49, 1 – 8. https://doi.org/10.1016/j.neurobiolaging.2016.09.003
dc.identifier.citedreferenceSandrini, M., Brambilla, M., Manenti, R., Rosini, S., Cohen, L. G., & Cotelli, M. ( 2014 ). Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly. Frontiers in Aging Neuroscience, 6, 1 – 9. https://doi.org/10.3389/fnagi.2014.00289
dc.identifier.citedreferenceSandrini, M., Censor, N., Mishoe, J., & Cohen, L. G. ( 2013 ). Causal role of prefrontal cortex in strengthening of episodic memories through reconsolidation. Current Biology, 23 ( 21 ), 2181 – 2184. https://doi.org/10.1016/j.cub.2013.08.045
dc.identifier.citedreferenceSandrini, M., Manenti, R., Gobbi, E., Rusich, D., Bartl, G., & Cotelli, M. ( 2019 ). Transcranial direct current stimulation applied after encoding facilitates episodic memory consolidation in older adults. Neurobiology of Learning and Memory, 163, 107037. https://doi.org/10.1016/j.nlm.2019.107037
dc.identifier.citedreferenceSattari, N., Whitehurst, L. N., Ahmadi, M., & Mednick, S. C. ( 2019 ). Does working memory improvement benefit from sleep in older adults? Neurobiology of Sleep and Circadian Rhythms, 6, 53 – 61. https://doi.org/10.1016/j.nbscr.2019.01.001
dc.identifier.citedreferenceShah, A. M., Grotzinger, H., Kaczmarzyk, J. R., Powell, L. J., Yücel, M. A., Gabrieli, J. D. E., & Hubbard, N. A. ( 2020 ). Fixed and flexible: Dynamic prefrontal activations and working memory capacity relationships vary with memory demand. Cognitive Neuroscience, 11 ( 4 ), 175 – 180. https://doi.org/10.1080/17588928.2019.1694500
dc.identifier.citedreferenceShawn Green, C., Bavelier, D., Kramer, A. F., Vinogradov, S., Ansorge, U., Ball, K. K., Bingel, U., Chein, J. M., Colzato, L. S., Edwards, J. D., Facoetti, A., Gazzaley, A., Gathercole, S. E., Ghisletta, P., Gori, S., Granic, I., Hillman, C. H., Hommel, B., Jaeggi, S. M., … Witt, C. M. ( 2019 ). Improving methodological standards in behavioral interventions for cognitive enhancement. Journal of Cognitive Enhancement, 3 ( 1 ), 2 – 29. https://doi.org/10.1007/s41465‐018‐0115‐y
dc.identifier.citedreferenceSmith, E. E., Jonides, J., & Koeppe, R. A. ( 1996 ). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6 ( 1 ), 11 – 20. https://doi.org/10.1093/cercor/6.1.11
dc.identifier.citedreferenceSperling, R. A., Dickerson, B. C., Pihlajamaki, M., Vannini, P., LaViolette, P. S., Vitolo, O. V., Hedden, T., Becker, J. A., Rentz, D. M., Selkoe, D. J., & Johnson, K. A. ( 2010 ). Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Medicine, 12 ( 1 ), 27 – 43. https://doi.org/10.1007/s12017‐009‐8109‐7
dc.identifier.citedreferenceSriraman, A., Oishi, T., & Madhavan, S. ( 2014 ). Timing‐dependent priming effects of tDCS on ankle motor skill learning. Brain Research, 1581, 23 – 29. https://doi.org/10.1016/j.brainres.2014.07.021
dc.identifier.citedreferenceStagg, C. J., Jayaram, G., Pastor, D., Kincses, Z. T., Matthews, P. M., & Johansen‐Berg, H. ( 2011 ). Polarity and timing‐dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia, 49 ( 5 ), 800 – 804. https://doi.org/10.1016/j.neuropsychologia.2011.02.009
dc.identifier.citedreferenceStataCorp. ( 2013 ). Stata statistical software: Release 13. StataCorp LP.
dc.identifier.citedreferenceSummers, J. J., Kang, N., & Cauraugh, J. H. ( 2016 ). Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta‐ analysis. Ageing Research Reviews, 25, 42 – 54. https://doi.org/10.1016/j.arr.2015.11.004
dc.identifier.citedreferenceTecchio, F., Zappasodi, F., Assenza, G., Tombini, M., Vollaro, S., Barbati, G., & Rossini, P. M. ( 2010 ). Anodal transcranial direct current stimulation enhances procedural consolidation. Journal of Neurophysiology, 104 ( 2 ), 1134 – 1140. https://doi.org/10.1152/jn.00661.2009
dc.identifier.citedreferenceTrumbo, M. C., Matzen, L. E., Coffman, B. A., Hunter, M. A., Jones, A. P., Robinson, C. S. H., & Clark, V. P. ( 2016 ). Enhanced working memory performance via transcranial direct current stimulation: The possibility of near and far transfer. Neuropsychologia, 93, 85 – 96. https://doi.org/10.1016/j.neuropsychologia.2016.10.011
dc.identifier.citedreferenceTseng, P., Hsu, T.‐Y., Chang, C.‐F., Tzeng, O. J. L., Hung, D. L., Muggleton, N. G., Walsh, V., Liang, W.‐K., Cheng, S.‐K., & Juan, C.‐H. ( 2012 ). Unleashing potential: Transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low‐performing individuals. Journal of Neuroscience, 32 ( 31 ), 10554 – 10561. https://doi.org/10.1523/JNEUROSCI.0362‐12.2012
dc.identifier.citedreferenceTurriziani, P., Smirni, D., Zappalà, G., Mangano, G. R., Oliveri, M., & Cipolotti, L. ( 2012 ). Enhancing memory performance with rTMS in healthy subjects and individuals with mild cognitive impairment: The role of the right dorsolateral prefrontal cortex. Frontiers in Human Neuroscience, 6, 1 – 8. https://doi.org/10.3389/fnhum.2012.00062
dc.identifier.citedreferenceWamsley, E. J. ( 2019 ). Memory consolidation during waking rest. Trends in Cognitive Sciences, 23 ( 3 ), 171 – 173. https://doi.org/10.1016/j.tics.2018.12.007
dc.identifier.citedreferenceWang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., Wu, T., Jiang, T., & Li, K. ( 2006 ). Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: Evidence from resting state fMRI. NeuroImage, 31 ( 2 ), 496 – 504. https://doi.org/10.1016/j.neuroimage.2005.12.033
dc.identifier.citedreferenceWang, S., & Ku, Y. ( 2018 ). The causal role of right dorsolateral prefrontal cortex in visual working memory. Acta Psychologica Sinica, 50 ( 7 ), 727. https://doi.org/10.3724/SP.J.1041.2018.00727
dc.identifier.citedreferenceWorkman, C. D., Kamholz, J., & Rudroff, T. ( 2019 ). Transcranial direct current stimulation (tDCS) to improve gait in multiple sclerosis: A timing window comparison. Frontiers in Human Neuroscience, 13, 1 – 7. https://doi.org/10.3389/fnhum.2019.00420
dc.identifier.citedreferenceXie, H., Chen, Y., Lin, Y., Hu, X., & Zhang, D. ( 2020 ). Can’t forget: Disruption of the right prefrontal cortex impairs voluntary forgetting in a recognition test. Memory, 28 ( 1 ), 60 – 69. https://doi.org/10.1080/09658211.2019.1681456
dc.identifier.citedreferenceZinke, K., Noack, H., & Born, J. ( 2018 ). Sleep augments training‐induced improvement in working memory in children and adults. Neurobiology of Learning and Memory, 147, 46 – 53. https://doi.org/10.1016/j.nlm.2017.11.009
dc.identifier.citedreferenceAnderson, M. C. ( 2004 ). Neural systems underlying the suppression of unwanted memories. Science, 303 ( 5655 ), 232 – 235. https://doi.org/10.1126/science.1089504
dc.identifier.citedreferenceAnderson, M. C., & Green, C. ( 2001 ). Suppressing unwanted memories by executive control. Nature, 410 ( 6826 ), 366 – 369. https://doi.org/10.1038/35066572
dc.identifier.citedreferenceAsthana, M., Nueckel, K., Mühlberger, A., Neueder, D., Polak, T., Domschke, K., Deckert, J., & Herrmann, M. J. ( 2013 ). Effects of transcranial direct current stimulation on consolidation of fear memory. Frontiers in Psychiatry, 4, 1 – 7. https://doi.org/10.3389/fpsyt.2013.00107
dc.identifier.citedreferenceAu, J., Karsten, C., Buschkuehl, M., & Jaeggi, S. M. ( 2017 ). Optimizing transcranial direct current stimulation protocols to promote long‐term learning. Journal of Cognitive Enhancement, 1 ( 1 ), 65 – 72. https://doi.org/10.1007/s41465‐017‐0007‐6
dc.identifier.citedreferenceAu, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., Jaeggi, S. M., & Jonides, J. ( 2016 ). Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28 ( 9 ), 1419 – 1432. https://doi.org/10.1162/jocn_a_00979
dc.identifier.citedreferenceBagherzadeh, Y., Khorrami, A., Zarrindast, M. R., Shariat, S. V., & Pantazis, D. ( 2016 ). Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex enhances working memory. Experimental Brain Research, 234 ( 7 ), 1807 – 1818. https://doi.org/10.1007/s00221‐016‐4580‐1
dc.identifier.citedreferenceBai, F., Zhang, Z., Watson, D. R., Yu, H., Shi, Y., Yuan, Y., Zang, Y., Zhu, C., & Qian, Y. ( 2009 ). Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment. Biological Psychiatry, 65 ( 11 ), 951 – 958. https://doi.org/10.1016/j.biopsych.2008.10.017
dc.identifier.citedreferenceBarbey, A. K., Koenigs, M., & Grafman, J. ( 2013 ). Dorsolateral prefrontal contributions to human working memory. Cortex, 49 ( 5 ), 1195 – 1205. https://doi.org/10.1016/j.cortex.2012.05.022
dc.identifier.citedreferenceBeam, W., Borckardt, J. J., Reeves, S. T., & George, M. S. ( 2009 ). An efficient and accurate new method for locating the F3 position for prefrontal TMS applications. Brain Stimulation, 2 ( 1 ), 50 – 54. https://doi.org/10.1016/j.brs.2008.09.006
dc.identifier.citedreferenceBekinschtein, P., Weisstaub, N. V., Gallo, F., Renner, M., & Anderson, M. C. ( 2018 ). A retrieval‐specific mechanism of adaptive forgetting in the mammalian brain. Nature Communications, 9 ( 1 ), 4660. https://doi.org/10.1038/s41467‐018‐07128‐7
dc.identifier.citedreferenceBenwell, C. S. Y., Learmonth, G., Miniussi, C., Harvey, M., & Thut, G. ( 2015 ). Non‐linear effects of transcranial direct current stimulation as a function of individual baseline performance: Evidence from biparietal tDCS influence on lateralized attention bias. Cortex, 69, 152 – 165. https://doi.org/10.1016/j.cortex.2015.05.007
dc.identifier.citedreferenceBerryhill, M. E. ( 2017 ). Longitudinal tDCS: Consistency across working memory training studies. Neuroscience, 4, 71 – 86. https://doi.org/10.3934/Neuroscience.2017.2.71
dc.identifier.citedreferenceBikson, M., name, A., & Rahman, A. ( 2013 ). Origins of specificity during tDCS: Anatomical, activity‐selective, and input‐bias mechanisms. Frontiers in Human Neuroscience, 7, 1 – 5. https://doi.org/10.3389/fnhum.2013.00688
dc.identifier.citedreferenceBortoletto, M., Pellicciari, M. C., Rodella, C., & Miniussi, C. ( 2015 ). The interaction with task‐induced activity is more important than polarization: A tDCS study. Brain Stimulation, 8 ( 2 ), 269 – 276. https://doi.org/10.1016/j.brs.2014.11.006
dc.identifier.citedreferenceBrokaw, K., Tishler, W., Manceor, S., Hamilton, K., Gaulden, A., Parr, E., & Wamsley, E. J. ( 2016 ). Resting state EEG correlates of memory consolidation. Neurobiology of Learning and Memory, 130, 17 – 25. https://doi.org/10.1016/j.nlm.2016.01.008
dc.identifier.citedreferenceBuchwald, A., Calhoun, H., Rimikis, S., Lowe, M. S., Wellner, R., & Edwards, D. J. ( 2019 ). Using tDCS to facilitate motor learning in speech production: The role of timing. Cortex, 111, 274 – 285. https://doi.org/10.1016/j.cortex.2018.11.014
dc.identifier.citedreferenceCabral, M. E., Baltar, A., Borba, R., Galvão, S., Santos, L., Fregni, F., & Monte‐Silva, K. ( 2015 ). Transcranial direct current stimulation: Before, during, or after motor training? NeuroReport, 26 ( 11 ), 618 – 622. https://doi.org/10.1097/WNR.0000000000000397
dc.identifier.citedreferenceCepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. ( 2006 ). Distributed practice in verbal recall tasks: A review and quantitative synthesis. Psychological Bulletin, 132 ( 3 ), 354 – 380. https://doi.org/10.1037/0033‐2909.132.3.354
dc.identifier.citedreferenceChen, J., McCulloch, A., Kim, H., Kim, T., Rhee, J., Verwey, W. B., Buchanan, J. J., & Wright, D. L. ( 2020 ). Application of anodal tDCS at primary motor cortex immediately after practice of a motor sequence does not improve offline gain. Experimental Brain Research, 238 ( 1 ), 29 – 37. https://doi.org/10.1007/s00221‐019‐05697‐7
dc.identifier.citedreferenceChen, P.‐C., Whitehurst, L. N., Naji, M., & Mednick, S. C. ( 2020 ). Autonomic/central coupling benefits working memory in healthy young adults. Neurobiology of Learning and Memory, 173, 107267. https://doi.org/10.1016/j.nlm.2020.107267
dc.identifier.citedreferenceCohen, D. A., & Robertson, E. M. ( 2011 ). Preventing interference between different memory tasks. Nature Neuroscience, 14 ( 8 ), 953 – 955. https://doi.org/10.1038/nn.2840
dc.identifier.citedreferenceCraig, M., & Dewar, M. ( 2018 ). Rest‐related consolidation protects the fine detail of new memories. Scientific Reports, 8 ( 1 ), 1 – 9. https://doi.org/10.1038/s41598‐018‐25313‐y
dc.identifier.citedreferenceCrupi, D., Hulse, B. K., Peterson, M. J., Huber, R., Ansari, H., Coen, M., Cirelli, C., Benca, R. M., Ghilardi, M. F., & Tononi, G. ( 2009 ). Sleep‐dependent improvement in visuomotor learning: A causal role for slow waves. Sleep, 32 ( 10 ), 1273 – 1284. https://doi.org/10.1093/sleep/32.10.1273
dc.identifier.citedreferenceCurtis, C. E., & D’Esposito, M. ( 2003 ). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7 ( 9 ), 415 – 423. https://doi.org/10.1016/s1364‐6613(03)00197‐9
dc.identifier.citedreferenceDedoncker, J., Brunoni, A. R., Baeken, C., & Vanderhasselt, M.‐A. ( 2016 ). A systematic review and meta‐analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: Influence of stimulation parameters. Brain Stimulation, 9 ( 4 ), 501 – 517. https://doi.org/10.1016/j.brs.2016.04.006
dc.identifier.citedreferenceDewar, M., Alber, J., Cowan, N., & Della Sala, S. ( 2014 ). Boosting long‐term memory via wakeful rest: Intentional rehearsal is not necessary, consolidation is sufficient. PLoS ONE, 9 ( 10 ), e109542. https://doi.org/10.1371/journal.pone.0109542
dc.identifier.citedreferenceDiekelmann, S., Büchel, C., Born, J., & Rasch, B. ( 2011 ). Labile or stable: Opposing consequences for memory when reactivated during waking and sleep. Nature Neuroscience, 14 ( 3 ), 381 – 386. https://doi.org/10.1038/nn.2744
dc.identifier.citedreferenceEbbinghaus, H. ( 1885 ). Memory: A contribution to experimental psychology (H. A. Ruger & C. E. Bussenius, Trans.).
dc.identifier.citedreferenceEriksson, J., Kalpouzos, G., & Nyberg, L. ( 2011 ). Rewiring the brain with repeated retrieval: A parametric fMRI study of the testing effect. Neuroscience Letters, 505 ( 1 ), 36 – 40. https://doi.org/10.1016/j.neulet.2011.08.061
dc.identifier.citedreferenceFaria, P., Hallett, M., & Miranda, P. C. ( 2011 ). A finite element analysis of the effect of electrode area and inter‐electrode distance on the spatial distribution of the current density in tDCS. Journal of Neural Engineering, 8 ( 6 ), 066017. https://doi.org/10.1088/1741‐2560/8/6/066017
dc.identifier.citedreferenceFerrarelli, F., Kaskie, R., Laxminarayan, S., Ramakrishnan, S., Reifman, J., & Germain, A. ( 2019 ). An increase in sleep slow waves predicts better working memory performance in healthy individuals. NeuroImage, 191, 1 – 9. https://doi.org/10.1016/j.neuroimage.2019.02.020
dc.identifier.citedreferenceFertonani, A., Brambilla, M., Cotelli, M., & Miniussi, C. ( 2014 ). The timing of cognitive plasticity in physiological aging: A tDCS study of naming. Frontiers in Aging Neuroscience, 6, 1 – 9. https://doi.org/10.3389/fnagi.2014.00131
dc.identifier.citedreferenceFregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., Marcolin, M. A., Rigonatti, S. P., Silva, M. T. A., Paulus, W., & Pascual‐Leone, A. ( 2005 ). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166 ( 1 ), 23 – 30. https://doi.org/10.1007/s00221‐005‐2334‐6
dc.identifier.citedreferenceFried, P. J., Rushmore, R. J., Moss, M. B., Valero‐Cabré, A., & Pascual‐Leone, A. ( 2014 ). Causal evidence supporting functional dissociation of verbal and spatial working memory in the human dorsolateral prefrontal cortex. European Journal of Neuroscience, 39 ( 11 ), 1973 – 1981. https://doi.org/10.1111/ejn.12584
dc.identifier.citedreferenceFritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G., & Lu, B. ( 2010 ). Direct current stimulation promotes BDNF‐dependent synaptic plasticity: Potential implications for motor learning. Neuron, 66 ( 2 ), 198 – 204. https://doi.org/10.1016/j.neuron.2010.03.035
dc.identifier.citedreferenceGiacobbe, V., Krebs, H. I., Volpe, B. T., Pascual‐Leone, A., Rykman, A., Zeiarati, G., Fregni, F., Dipietro, L., Thickbroom, G. W., & Edwards, D. J. ( 2013 ). Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: The dimension of timing. NeuroRehabilitation, 33 ( 1 ), 49 – 56. https://doi.org/10.3233/NRE‐130927
dc.identifier.citedreferenceGiglia, G., Brighina, F., Rizzo, S., Puma, A., Indovino, S., Maccora, S., Baschi, R., Cosentino, G., & Fierro, B. ( 2014 ). Anodal transcranial direct current stimulation of the right dorsolateral prefrontal cortex enhances memory‐guided responses in a visuospatial working memory task. Functional Neurology, 29 ( 3 ), 189 – 193.
dc.identifier.citedreferenceHill, A. T., Fitzgerald, P. B., & Hoy, K. E. ( 2016 ). Effects of anodal transcranial direct current stimulation on working memory: A systematic review and meta‐analysis of findings from healthy and neuropsychiatric populations. Brain Stimulation, 9 ( 2 ), 197 – 208. https://doi.org/10.1016/j.brs.2015.10.006
dc.identifier.citedreferenceHsu, W.‐Y., Ku, Y., Zanto, T. P., & Gazzaley, A. ( 2015 ). Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: A systematic review and meta‐analysis. Neurobiology of Aging, 36 ( 8 ), 2348 – 2359. https://doi.org/10.1016/j.neurobiolaging.2015.04.016
dc.identifier.citedreferenceHuber, R., Felice Ghilardi, M., Massimini, M., & Tononi, G. ( 2004 ). Local sleep and learning. Nature, 430 ( 6995 ), 78 – 81. https://doi.org/10.1038/nature02663
dc.identifier.citedreferenceHumiston, G. B., Tucker, M. A., Summer, T., & Wamsley, E. J. ( 2019 ). Resting states and memory consolidation: A preregistered replication and meta‐analysis. Scientific Reports, 9 ( 1 ), 19345. https://doi.org/10.1038/s41598‐019‐56033‐6
dc.identifier.citedreferenceJASP Team. ( 2018 ). JASP (Version 0.8.6) [Computer Software].
dc.identifier.citedreferenceJavadi, A. H., & Cheng, P. ( 2013 ). Transcranial direct current stimulation (tDCS) enhances reconsolidation of long‐term memory. Brain Stimulation, 6 ( 4 ), 668 – 674. https://doi.org/10.1016/j.brs.2012.10.007
dc.identifier.citedreferenceJones, K. T., & Berryhill, M. E. ( 2012 ). Parietal contributions to visual working memory depend on task difficulty. Frontiers in Psychiatry, 3, 1 – 11. https://doi.org/10.3389/fpsyt.2012.00081
dc.identifier.citedreferenceJones, K. T., Johnson, E. L., & Berryhill, M. E. ( 2020 ). Frontoparietal theta‐gamma interactions track working memory enhancement with training and tDCS. NeuroImage, 211, 116615. https://doi.org/10.1016/j.neuroimage.2020.116615
dc.identifier.citedreferenceJones, K. T., Peterson, D. J., Blacker, K. J., & Berryhill, M. E. ( 2017 ). Frontoparietal neurostimulation modulates working memory training benefits and oscillatory synchronization. Brain Research, 1667, 28 – 40. https://doi.org/10.1016/j.brainres.2017.05.005
dc.identifier.citedreferenceJones, K. T., Stephens, J. A., Alam, M., Bikson, M., & Berryhill, M. E. ( 2015 ). Longitudinal neurostimulation in older adults improves working memory. PLoS ONE, 10 ( 4 ), e0121904. https://doi.org/10.1371/journal.pone.0121904
dc.identifier.citedreferenceKaplan, R., Adhikari, M. H., Hindriks, R., Mantini, D., Murayama, Y., Logothetis, N. K., & Deco, G. ( 2016 ). Hippocampal sharp‐wave ripples influence selective activation of the default mode network. Current Biology, 26 ( 5 ), 686 – 691. https://doi.org/10.1016/j.cub.2016.01.017
dc.identifier.citedreferenceKarlsson Wirebring, L., Wiklund‐Hörnqvist, C., Eriksson, J., Andersson, M., Jonsson, B., & Nyberg, L. ( 2015 ). Lesser neural pattern similarity across repeated tests is associated with better long‐term memory retention. Journal of Neuroscience, 35 ( 26 ), 9595 – 9602. https://doi.org/10.1523/JNEUROSCI.3550‐14.2015
dc.identifier.citedreferenceKatz, B., Au, J., Buschkuehl, M., Abagis, T., Zabel, C., Jaeggi, S. M., & Jonides, J. ( 2017 ). Individual differences and long‐term consequences of tDCS‐augmented cognitive training. Journal of Cognitive Neuroscience, 29 ( 9 ), 1498 – 1508. https://doi.org/10.1162/jocn_a_01115
dc.identifier.citedreferenceKeresztes, A., Kaiser, D., Kovács, G., & Racsmány, M. ( 2014 ). Testing promotes long‐term learning via stabilizing activation patterns in a large network of brain areas. Cerebral Cortex, 24 ( 11 ), 3025 – 3035. https://doi.org/10.1093/cercor/bht158
dc.identifier.citedreferenceKing, B. R., Rumpf, J.‐J., Heise, K.‐F., Veldman, M. P., Peeters, R., Doyon, J., Classen, J., Albouy, G., & Swinnen, S. P. ( 2020 ). Lateralized effects of post‐learning transcranial direct current stimulation on motor memory consolidation in older adults: An fMRI investigation. NeuroImage, 223, 117323. https://doi.org/10.1016/j.neuroimage.2020.117323
dc.identifier.citedreferenceKuhl, B. A., Dudukovic, N. M., Kahn, I., & Wagner, A. D. ( 2007 ). Decreased demands on cognitive control reveal the neural processing benefits of forgetting. Nature Neuroscience, 10 ( 7 ), 908 – 914. https://doi.org/10.1038/nn1918
dc.identifier.citedreferenceKuriyama, K., Mishima, K., Suzuki, H., Aritake, S., & Uchiyama, M. ( 2008 ). Sleep accelerates the improvement in working memory performance. Journal of Neuroscience, 28 ( 40 ), 10145 – 10150. https://doi.org/10.1523/JNEUROSCI.2039‐08.2008
dc.identifier.citedreferenceLang, N., Siebner, H. R., Ward, N. S., Lee, L., Nitsche, M. A., Paulus, W., Rothwell, J. C., Lemon, R. N., & Frackowiak, R. S. ( 2005 ). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? European Journal of Neuroscience, 22 ( 2 ), 495 – 504. https://doi.org/10.1111/j.1460‐9568.2005.04233.x
dc.identifier.citedreferenceLau, E. Y. Y., Wong, M. L., Lau, K. N. T., Hui, F. W. Y., & Tseng, C. ( 2015 ). Rapid‐eye‐movement‐sleep (REM) associated enhancement of working memory performance after a daytime nap. PLoS ONE, 10 ( 5 ), e0125752. https://doi.org/10.1371/journal.pone.0125752
dc.identifier.citedreferenceLee, C., Jung, Y‐J., Lee, S. J., & Im, C‐H. ( 2017 ). COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation. Journal of Neuroscience Methods, 277, 56 – 62.
dc.identifier.citedreferenceLiu, H. ( 2015 ). Comparing Welch’s ANOVA, a Kruskal‐Wallis test and traditional ANOVA in case of heterogeneity of variance (Theses and dissertations). https://doi.org/10.25772/BWFP‐YE95
dc.identifier.citedreferenceLooi, C. Y., Duta, M., Brem, A.‐K., Huber, S., Nuerk, H.‐C., & Cohen Kadosh, R. ( 2016 ). Combining brain stimulation and video game to promote long‐term transfer of learning and cognitive enhancement. Scientific Reports, 6, 22003. https://doi.org/10.1038/srep22003
dc.identifier.citedreferenceMäättä, S., Landsness, E., Sarasso, S., Ferrarelli, F., Ferreri, F., Ghilardi, M. F., & Tononi, G. ( 2010 ). The effects of morning training on night sleep: A behavioral and EEG study. Brain Research Bulletin, 82 ( 1 ), 118 – 123. https://doi.org/10.1016/j.brainresbull.2010.01.006
dc.identifier.citedreferenceMancuso, L. E., Ilieva, I. P., Hamilton, R. H., & Farah, M. J. ( 2016 ). Does transcranial direct current stimulation improve healthy working memory?: A meta‐analytic review. Journal of Cognitive Neuroscience, 28 ( 8 ), 1063 – 1089. https://doi.org/10.1162/jocn_a_00956
dc.identifier.citedreferenceMaren, S. ( 2011 ). Seeking a spotless mind: Extinction, deconsolidation, and erasure of fear memory. Neuron, 70 ( 5 ), 830 – 845. https://doi.org/10.1016/j.neuron.2011.04.023
dc.identifier.citedreferenceMarián, M., Szőllősi, Á., & Racsmány, M. ( 2018 ). Anodal transcranial direct current stimulation of the right dorsolateral prefrontal cortex impairs long‐term retention of reencountered memories. Cortex, 108, 80 – 91. https://doi.org/10.1016/j.cortex.2018.07.012
dc.identifier.citedreferenceMartin, D. M., Liu, R., Alonzo, A., Green, M., & Loo, C. K. ( 2014 ). Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: Effect of timing of stimulation. Experimental Brain Research, 232 ( 10 ), 3345 – 3351. https://doi.org/10.1007/s00221‐014‐4022‐x
dc.identifier.citedreferenceMartin, D. M., Liu, R., Alonzo, A., Green, M., Player, M. J., Sachdev, P., & Loo, C. K. ( 2013 ). Can transcranial direct current stimulation enhance outcomes from cognitive training? A randomized controlled trial in healthy participants. International Journal of Neuropsychopharmacology, 16 ( 9 ), 1927 – 1936. https://doi.org/10.1017/S1461145713000539
dc.identifier.citedreferenceMatsumoto, M., Sakurada, T., & Yamamoto, S. ( 2020 ). Distinct bilateral prefrontal activity patterns associated with the qualitative aspect of working memory characterized by individual sensory modality dominance. PLoS ONE, 15 ( 8 ), e0238235. https://doi.org/10.1371/journal.pone.0238235
dc.identifier.citedreferenceMiall, R. C., & Robertson, E. M. ( 2006 ). Functional imaging: Is the resting brain resting? Current Biology, 16 ( 23 ), R998 – R1000. https://doi.org/10.1016/j.cub.2006.10.041
dc.identifier.citedreferenceNader, K. ( 2003 ). Memory traces unbound. Trends in Neurosciences, 26 ( 2 ), 65 – 72. https://doi.org/10.1016/S0166‐2236(02)00042‐5
dc.identifier.citedreferenceNader, K., Hardt, O., & Wang, S.‐H. ( 2005 ). Response to Alberini: Right answer, wrong question. Trends in Neurosciences, 28 ( 7 ), 346 – 347. https://doi.org/10.1016/j.tins.2005.04.011
dc.identifier.citedreferenceNitsche, M. A., & Paulus, W. ( 2000 ). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527 ( Pt 3 ), 633 – 639. https://doi.org/10.1111/j.1469‐7793.2000.t01‐1‐00633.x
dc.identifier.citedreferenceO’Connell, N. E., Cossar, J., Marston, L., Wand, B. M., Bunce, D., Moseley, G. L., & Souza, L. H. D. ( 2012 ). Rethinking clinical trials of transcranial direct current stimulation: Participant and assessor blinding is inadequate at intensities of 2mA. PLoS ONE, 7 ( 10 ), e47514. https://doi.org/10.1371/journal.pone.0047514
dc.identifier.citedreferenceOberauer, K. ( 2009 ). Chapter 2 design for a working memory. In B. H Ross (Ed.), Psychology of learning and motivation (Vol. 51, pp. 45 – 100 ). Academic Press. https://doi.org/10.1016/S0079‐7421(09)51002‐X
dc.identifier.citedreferenceOldrati, V., Colombo, B., & Antonietti, A. ( 2018 ). Combination of a short cognitive training and tDCS to enhance visuospatial skills: A comparison between online and offline neuromodulation. Brain Research, 1678, 32 – 39. https://doi.org/10.1016/j.brainres.2017.10.002
dc.identifier.citedreferencePeña‐Gómez, C., Sala‐Lonch, R., Junqué, C., Clemente, I. C., Vidal, D., Bargalló, N., Falcón, C., Valls‐Solé, J., Pascual‐Leone, Á., & Bartrés‐Faz, D. ( 2012 ). Modulation of large‐scale brain networks by transcranial direct current stimulation evidenced by resting‐state functional MRI. Brain Stimulation, 5 ( 3 ), 252 – 263. https://doi.org/10.1016/j.brs.2011.08.006
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.