Show simple item record

A guide to membrane protein X‐ray crystallography

dc.contributor.authorKermani, Ali A.
dc.date.accessioned2021-11-02T00:45:11Z
dc.date.available2022-11-01 20:45:10en
dc.date.available2021-11-02T00:45:11Z
dc.date.issued2021-10
dc.identifier.citationKermani, Ali A. (2021). "A guide to membrane protein X‐ray crystallography." The FEBS Journal (20): 5788-5804.
dc.identifier.issn1742-464X
dc.identifier.issn1742-4658
dc.identifier.urihttps://hdl.handle.net/2027.42/170809
dc.publisherSpringer US
dc.publisherWiley Periodicals, Inc.
dc.subject.otherX‐ray crystallography
dc.subject.otherdetergents
dc.subject.otherin meso crystallization
dc.subject.othermembrane proteins
dc.subject.othercrystallization chaperones
dc.titleA guide to membrane protein X‐ray crystallography
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170809/1/febs15676_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170809/2/febs15676.pdf
dc.identifier.doi10.1111/febs.15676
dc.identifier.sourceThe FEBS Journal
dc.identifier.citedreferencePartridge LJ ( 1994 ) The production of monoclonal antibodies to membrane proteins. In Biomembrane Protocols: II Architecture and Function ( Graham JM & Higgins JA, eds), pp. 65 – 86. Springer New York, Totowa, NJ.
dc.identifier.citedreferenceBirch J, Axford D, Foadi J, Meyer A, Eckhardt A, Thielmann Y & Moraes I ( 2018 ) The fine art of integral membrane protein crystallisation. Methods 147, 150 – 162.
dc.identifier.citedreferenceWlodawer A, Minor W, Dauter Z & Jaskolski M ( 2013 ) Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS J 280, 5705 – 5736.
dc.identifier.citedreferenceKane Dickson V ( 2016 ) Phasing and structure of bestrophin‐1: a case study in the use of heavy‐atom cluster compounds with multi‐subunit transmembrane proteins. Acta Crystallogr D Struct Biol 72, 319 – 325.
dc.identifier.citedreferenceTickle IJ, Flensburg C, Keller P, Paciorek W, Sharff A, Vonrhein C & Bricogne G ( 2018 ) STARANISO. Global Phasing Ltd., Cambridge.
dc.identifier.citedreferenceStrong M, Sawaya MR, Wang S, Phillips M, Cascio D & Eisenberg D ( 2006 ) Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103, 8060 – 8065.
dc.identifier.citedreferenceZickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C & Brandt U ( 2015 ) Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347, 44 – 49.
dc.identifier.citedreferenceSafarian S, Rajendran C, Müller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J & Michel H ( 2016 ) Structure of a bd oxidase indicates similar mechanisms for membrane‐integrated oxygen reductases. Science 352, 583 – 586.
dc.identifier.citedreferenceRasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D et al. ( 2011 ) Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549 – 555.
dc.identifier.citedreferenceHuang C‐Y, Olieric V, Howe N, Warshamanage R, Weinert T, Panepucci E, Vogeley L, Basu S, Diederichs K, Caffrey M et al. ( 2018 ) In situ serial crystallography for rapid de novo membrane protein structure determination. Commun Biol 1, 124.
dc.identifier.citedreferenceParker JL & Newstead S ( 2013 ) Phasing statistics for alpha helical membrane protein structures. Protein Sci 22, 1664 – 1668.
dc.identifier.citedreferencePike ACW, Garman EF, Krojer T, von Delft F & Carpenter EP ( 2016 ) An overview of heavy‐atom derivatization of protein crystals. Acta Crystallogr D Struct Biol 72, 303 – 318.
dc.identifier.citedreferenceHendrickson WA, Horton JR & LeMaster DM ( 1990 ) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. EMBO J 9, 1665 – 1672.
dc.identifier.citedreferenceWalden H ( 2010 ) Selenium incorporation using recombinant techniques. Acta Crystallogr D Biol Crystallogr 66, 352 – 357.
dc.identifier.citedreferenceBarton WA, Tzvetkova‐Robev D, Erdjument‐Bromage H, Tempst P & Nikolov DB ( 2006 ) Highly efficient selenomethionine labeling of recombinant proteins produced in mammalian cells. Protein Sci 15, 2008 – 2013.
dc.identifier.citedreferenceMelnikov I, Polovinkin V, Kovalev K, Gushchin I, Shevtsov M, Shevchenko V, Mishin A, Alekseev A, Rodriguez‐Valera F, Borshchevskiy V et al. ( 2017 ) Fast iodide‐SAD phasing for high‐throughput membrane protein structure determination. Sci Adv 3, e1602952.
dc.identifier.citedreferencevon Heijne G ( 1989 ) Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341, 456 – 458.
dc.identifier.citedreferenceGu Y, Li H, Dong H, Zeng Y, Zhang Z, Paterson NG, Stansfeld PJ, Wang Z, Zhang Y, Wang W et al. ( 2016 ) Structural basis of outer membrane protein insertion by the BAM complex. Nature 531, 64 – 69.
dc.identifier.citedreferenceGushchin I, Melnikov I, Polovinkin V, Ishchenko A, Yuzhakova A, Buslaev P, Bourenkov G, Grudinin S, Round E, Balandin T et al. ( 2017 ) Mechanism of transmembrane signaling by sensor histidine kinases. Science 356, eaah6345.
dc.identifier.citedreferenceSchlegel S, Löfblom J, Lee C, Hjelm A, Klepsch M, Strous M, Drew D, Slotboom DJ & de Gier J‐W ( 2012 ) Optimizing membrane protein overexpression in the Escherichia coli strain Lemo21(DE3). J Mol Biol 423, 648 – 659.
dc.identifier.citedreferenceStudier FW, Rosenberg AH, Dunn JJ & Dubendorff JW ( 1990 ) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185, 60 – 89.
dc.identifier.citedreferenceStetsenko A & Guskov A ( 2017 ) An overview of the top ten detergents used for membrane protein crystallization. Crystals 7, 197.
dc.identifier.citedreferenceSanders CR & Myers JK ( 2004 ) Disease‐related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct 33, 25 – 51.
dc.identifier.citedreferenceKrogh A, Larsson B, von Heijne G & Sonnhammer EL ( 2001 ) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305, 567 – 580.
dc.identifier.citedreferenceUhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A et al. ( 2015 ) Tissue‐based map of the human proteome. Science 347, 1260419.
dc.identifier.citedreferenceJia B & Jeon CO ( 2016 ) High‐throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol 6, 160196.
dc.identifier.citedreferenceFreigassner M, Pichler H & Glieder A ( 2009 ) Tuning microbial hosts for membrane protein production. Microb Cell Fact 8, 69.
dc.identifier.citedreferenceWerten PJL, Rémigy HW, de Groot BL, Fotiadis D, Philippsen A, Stahlberg H, Grubmüller H & Engel A ( 2002 ) Progress in the analysis of membrane protein structure and function. FEBS Lett 529, 65 – 72.
dc.identifier.citedreferenceCarpenter EP, Beis K, Cameron AD & Iwata S ( 2008 ) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18, 581 – 586.
dc.identifier.citedreferenceRobert X, Kassis‐Sahyoun J, Ceres N, Martin J, Sawaya MR, Read RJ, Gouet P, Falson P & Chaptal V ( 2017 ) X‐ray diffraction reveals the intrinsic difference in the physical properties of membrane and soluble proteins. Sci Rep 7, 17013.
dc.identifier.citedreferenceMurata K & Wolf M ( 2018 ) Cryo‐electron microscopy for structural analysis of dynamic biological macromolecules. Biochim Biophys Acta Gen Subj 1862, 324 – 334.
dc.identifier.citedreferenceGlaeser RM & Hall RJ ( 2011 ) Reaching the information limit in cryo‐EM of biological macromolecules: experimental aspects. Biophys J 100, 2331 – 2337.
dc.identifier.citedreferenceKühlbrandt W ( 2014 ) Biochemistry. The resolution revolution. Science 343, 1443 – 1444.
dc.identifier.citedreferenceCallaway E ( 2020 ) Revolutionary cryo‐EM is taking over structural biology. Nature 578, 201.
dc.identifier.citedreferenceLiu Y, Huynh DT & Yeates TO ( 2019 ) A 3.8 Å resolution cryo‐EM structure of a small protein bound to an imaging scaffold. Nat Commun 10, 1864.
dc.identifier.citedreferenceNakane T, Kotecha A, Sente A, McMullan G, Masiulis S, Brown PMGE, Grigoras IT, Malinauskaite L, Malinauskas T, Miehling J et al. ( 2020 ) Single‐particle cryo‐EM at atomic resolution. Nature 587, 152 – 156.
dc.identifier.citedreferenceMcIlwain BC & Kermani AA ( 2020 ) Membrane protein production in Escherichia coli. In Expression, Purification, and Structural Biology of Membrane Proteins ( Perez C & Maier T, eds), pp. 13 – 27. Springer US, New York, NY.
dc.identifier.citedreferenceBernaudat F, Frelet‐Barrand A, Pochon N, Dementin S, Hivin P, Boutigny S, Rioux J‐B, Salvi D, Seigneurin‐Berny D, Richaud P et al. ( 2011 ) Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 6, e29191.
dc.identifier.citedreferenceWagner S, Baars L, Ytterberg AJ, Klussmeier A, Wagner CS, Nord O, Nygren PA, van Wijk KJ & de Gier JW ( 2007 ) Consequences of membrane protein overexpression in Escherichia coli. Mol Cell Proteomics 6, 1527 – 1550.
dc.identifier.citedreferenceStudier FW & Moffatt BA ( 1986 ) Use of bacteriophage T7 RNA polymerase to direct selective high‐level expression of cloned genes. J Mol Biol 189, 113 – 130.
dc.identifier.citedreferenceZhang X & Studier FW ( 1997 ) Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme. J Mol Biol 269, 10 – 27.
dc.identifier.citedreferenceWagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Högbom M, van Wijk KJ, Slotboom DJ, Persson JO et al. ( 2008 ) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci USA 105, 14371 – 14376.
dc.identifier.citedreferenceMiroux B & Walker JE ( 1996 ) Over‐production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260, 289 – 298.
dc.identifier.citedreferenceParker JL & Newstead S ( 2014 ) Method to increase the yield of eukaryotic membrane protein expression in Saccharomyces cerevisiae for structural and functional studies. Protein Sci 23, 1309 – 1314.
dc.identifier.citedreferenceByrne B ( 2015 ) Pichia pastoris as an expression host for membrane protein structural biology. Curr Opin Struct Biol 32, 9 – 17.
dc.identifier.citedreferenceDukkipati A, Park HH, Waghray D, Fischer S & Garcia KC ( 2008 ) BacMam system for high‐level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Expr Purif 62, 160 – 170.
dc.identifier.citedreferenceDrew D, Lerch M, Kunji E, Slotboom D‐J & de Gier J‐W ( 2006 ) Optimization of membrane protein overexpression and purification using GFP fusions. Nat Methods 3, 303 – 313.
dc.identifier.citedreferenceMoraes I, Evans G, Sanchez‐Weatherby J, Newstead S & Stewart PD ( 2014 ) Membrane protein structure determination – the next generation. Biochim Biophys Acta 1838, 78 – 87.
dc.identifier.citedreferenceKawate T & Gouaux E ( 2006 ) Fluorescence‐detection size‐exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673 – 681.
dc.identifier.citedreferenceSeddon AM, Curnow P & Booth PJ ( 2004 ) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta Biomembr 1666, 105 – 117.
dc.identifier.citedreferenceBayburt TH, Grinkova YV & Sligar SG ( 2002 ) Self‐assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2, 853 – 856.
dc.identifier.citedreferenceBayburt TH & Sligar SG ( 2010 ) Membrane protein assembly into nanodiscs. FEBS Lett 584, 1721 – 1727.
dc.identifier.citedreferenceBoldog T, Li M & Hazelbauer GL ( 2007 ) Using nanodiscs to create water‐soluble transmembrane chemoreceptors inserted in lipid bilayers. Methods Enzymol 423, 317 – 335.
dc.identifier.citedreferenceGoddard AD, Dijkman PM, Adamson RJ, dos Reis RI & Watts A ( 2015 ) Reconstitution of membrane proteins: a GPCR as an example. Methods Enzymol 556, 405 – 424.
dc.identifier.citedreferenceRouck JE, Krapf JE, Roy J, Huff HC & Das A ( 2017 ) Recent advances in nanodisc technology for membrane protein studies (2012–2017). FEBS Lett 591, 2057 – 2088.
dc.identifier.citedreferenceNikolaev M, Round E, Gushchin I, Polovinkin V, Balandin T, Kuzmichev P, Shevchenko V, Borshchevskiy V, Kuklin A, Round A et al. ( 2017 ) Integral membrane proteins can be crystallized directly from nanodiscs. Cryst Growth Des 17, 945 – 948.
dc.identifier.citedreferenceSu C‐C, Morgan CE, Kambakam S, Rajavel M, Scott H, Huang W, Emerson CC, Taylor DJ, Stewart PL, Bonomo RA et al. ( 2019 ) Cryo‐electron microscopy structure of an Acinetobacter baumannii multidrug efflux pump. MBio 10, e01295‐19.
dc.identifier.citedreferenceShen PS, Yang X, DeCaen PG, Liu X, Bulkley D, Clapham DE & Cao E ( 2016 ) The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167, 763 – 773.e11.
dc.identifier.citedreferenceFrauenfeld J, Löving R, Armache JP, Sonnen AF, Guettou F, Moberg P, Zhu L, Jegerschöld C, Flayhan A, Briggs JA et al. ( 2016 ) A saposin‐lipoprotein nanoparticle system for membrane proteins. Nat Methods 13, 345 – 351.
dc.identifier.citedreferencePhillips R, Ursell T, Wiggins P & Sens P ( 2009 ) Emerging roles for lipids in shaping membrane‐protein function. Nature 459, 379 – 385.
dc.identifier.citedreferenceGuo Y ( 2020 ) Be cautious with crystal structures of membrane proteins or complexes prepared in detergents. Crystals 10, 86.
dc.identifier.citedreferenceTeo ACK, Lee SC, Pollock NL, Stroud Z, Hall S, Thakker A, Pitt AR, Dafforn TR, Spickett CM & Roper DI ( 2019 ) Analysis of SMALP co‐extracted phospholipids shows distinct membrane environments for three classes of bacterial membrane protein. Sci Rep 9, 1813.
dc.identifier.citedreferenceBroecker J, Eger BT & Ernst OP ( 2017 ) Crystallogenesis of membrane proteins mediated by polymer‐bounded lipid nanodiscs. Structure 25, 384 – 392.
dc.identifier.citedreferenceQiu W, Fu Z, Xu GG, Grassucci RA, Zhang Y, Frank J, Hendrickson WA & Guo Y ( 2018 ) Structure and activity of lipid bilayer within a membrane‐protein transporter. Proc Natl Acad Sci USA 115, 12985 – 12990.
dc.identifier.citedreferenceSun C, Benlekbir S, Venkatakrishnan P, Wang Y, Hong S, Hosler J, Tajkhorshid E, Rubinstein JL & Gennis RB ( 2018 ) Structure of the alternative complex III in a supercomplex with cytochrome oxidase. Nature 557, 123 – 126.
dc.identifier.citedreferenceYu J, Zhu H, Lape R, Greiner T, Shahoei R, Wang Y, Du J, Lü W, Tajkhorshid E, Sivilotti L et al. ( 2019 ) Mechanism of gating and partial agonist action in the glycine receptor. bioRxiv 786632. [PREPRINT]
dc.identifier.citedreferenceNewby ZE, O’Connell JD 3rd, Gruswitz F, Hays FA, Harries WE, Harwood IM, Ho JD, Lee JK, Savage DF, Miercke LJ et al. ( 2009 ) A general protocol for the crystallization of membrane proteins for X‐ray structural investigation. Nat Protoc 4, 619 – 637.
dc.identifier.citedreferenceAlexandrov AI, Mileni M, Chien EYT, Hanson MA & Stevens RC ( 2008 ) Microscale fluorescent thermal stability assay for membrane proteins. Structure 16, 351 – 359.
dc.identifier.citedreferenceKwan TOC, Reis R, Siligardi G, Hussain R, Cheruvara H & Moraes I ( 2019 ) Selection of biophysical methods for characterisation of membrane proteins. Int J Mol Sci 20, 2605.
dc.identifier.citedreferenceMeyer A, Dierks K, Hussein R, Brillet K, Brognaro H & Betzel C ( 2015 ) Systematic analysis of protein‐detergent complexes applying dynamic light scattering to optimize solutions for crystallization trials. Acta Crystallogr F Struct Biol Commun 71, 75 – 81.
dc.identifier.citedreferenceMa P, Weichert D, Aleksandrov LA, Jensen TJ, Riordan JR, Liu X, Kobilka BK & Caffrey M ( 2017 ) The cubicon method for concentrating membrane proteins in the cubic mesophase. Nat Protoc 12, 1745 – 1762.
dc.identifier.citedreferenceParker JL & Newstead S ( 2012 ) Current trends in α‐helical membrane protein crystallization: an update. Protein Sci 21, 1358 – 1365.
dc.identifier.citedreferenceNewstead S, Hobbs J, Jordan D, Carpenter EP & Iwata S ( 2008 ) Insights into outer membrane protein crystallization. Mol Membr Biol 25, 631 – 638.
dc.identifier.citedreferenceLandau EM & Rosenbusch JP ( 1996 ) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA 93, 14532.
dc.identifier.citedreferenceQiu H & Caffrey M ( 2000 ) The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials 21, 223 – 234.
dc.identifier.citedreferenceCaffrey M ( 2003 ) Membrane protein crystallization. J Struct Biol 142, 108 – 132.
dc.identifier.citedreferenceBertheleme N, Chae PS, Singh S, Mossakowska D, Hann MM, Smith KJ, Hubbard JA, Dowell SJ & Byrne B ( 2013 ) Unlocking the secrets of the gatekeeper: methods for stabilizing and crystallizing GPCRs. Biochim Biophys Acta Biomembr 1828, 2583 – 2591.
dc.identifier.citedreferenceGhosh E, Kumari P, Jaiman D & Shukla AK ( 2015 ) Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 16, 69 – 81.
dc.identifier.citedreferenceCaffrey M ( 2015 ) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun 71, 3 – 18.
dc.identifier.citedreferenceCaffrey M ( 2008 ) On the mechanism of membrane protein crystallization in lipidic mesophases. Cryst Growth Des 8, 4244 – 4254.
dc.identifier.citedreferenceSalvati Manni L, Zabara A, Osornio YM, Schöppe J, Batyuk A, Plückthun A, Siegel JS, Mezzenga R & Landau EM ( 2015 ) Phase behavior of a designed cyclopropyl analogue of monoolein: implications for low‐temperature membrane protein crystallization. Angew Chem Int Ed Engl 54, 1027 – 1031.
dc.identifier.citedreferenceZha J & Li D ( 2018 ) Lipid cubic phase for membrane protein X‐ray crystallography. In Membrane Biophysics ( Wang H & Li G, eds), pp. 175 – 220. Springer, Singapore.
dc.identifier.citedreferenceIshchenko A, Peng L, Zinovev E, Vlasov A, Lee SC, Kuklin A, Mishin A, Borshchevskiy V, Zhang Q & Cherezov V ( 2017 ) Chemically stable lipids for membrane protein crystallization. Cryst Growth Des 17, 3502 – 3511.
dc.identifier.citedreferenceCaffrey M & Cherezov V ( 2009 ) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4, 706 – 731.
dc.identifier.citedreferenceCherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H‐J, Kuhn P, Weis WI, Kobilka BK et al. ( 2007 ) High‐resolution crystal structure of an engineered human beta2‐adrenergic G protein‐coupled receptor. Science 318, 1258 – 1265.
dc.identifier.citedreferenceWu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC et al. ( 2010 ) Structures of the CXCR4 chemokine GPCR with small‐molecule and cyclic peptide antagonists. Science 330, 1066.
dc.identifier.citedreferenceRosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC et al. ( 2007 ) GPCR engineering yields high‐resolution structural insights into beta2‐adrenergic receptor function. Science 318, 1266 – 1273.
dc.identifier.citedreferenceJaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP & Stevens RC ( 2008 ) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211 – 1217.
dc.identifier.citedreferenceChien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V et al. ( 2010 ) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091 – 1095.
dc.identifier.citedreferenceShimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW et al. ( 2011 ) Structure of the human histamine H1 receptor complex with doxepin. Nature 475, 65 – 70.
dc.identifier.citedreferenceGranier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI & Kobilka BK ( 2012 ) Structure of the δ‐opioid receptor bound to naltrindole. Nature 485, 400 – 404.
dc.identifier.citedreferenceRosenbaum DM, Rasmussen SGF & Kobilka BK ( 2009 ) The structure and function of G‐protein‐coupled receptors. Nature 459, 356 – 363.
dc.identifier.citedreferenceZhou Y, Morais‐Cabral JH, Kaufman A & MacKinnon R ( 2001 ) Chemistry of ion coordination and hydration revealed by a K+ channel‐Fab complex at 2.0 A resolution. Nature 414, 43 – 48.
dc.identifier.citedreferenceDutzler R, Campbell EB, Cadene M, Chait BT & MacKinnon R ( 2002 ) X‐ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415, 287 – 294.
dc.identifier.citedreferenceTsukazaki T, Mori H, Fukai S, Ishitani R, Mori T, Dohmae N, Perederina A, Sugita Y, Vassylyev DG, Ito K et al. ( 2008 ) Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455, 988 – 991.
dc.identifier.citedreferenceHino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, Murata T, Iwata S & Shiro Y ( 2010 ) Structural basis of biological N%3csub%3e2%3c/sub%3eO generation by bacterial nitric oxide reductase. Science 330, 1666.
dc.identifier.citedreferenceKane Dickson V, Pedi L & Long SB ( 2014 ) Structure and insights into the function of a Ca(2+)‐activated Cl(‐) channel. Nature 516, 213 – 218.
dc.identifier.citedreferenceMuyldermans S ( 2013 ) Nanobodies: natural single‐domain antibodies. Annu Rev Biochem 82, 775 – 797.
dc.identifier.citedreferenceManglik A, Kobilka BK & Steyaert J ( 2017 ) Nanobodies to study G protein‐coupled receptor structure and function. Annu Rev Pharmacol Toxicol 57, 19 – 37.
dc.identifier.citedreferenceUchański T, Pardon E & Steyaert J ( 2020 ) Nanobodies to study protein conformational states. Curr Opin Struct Biol 60, 117 – 123.
dc.identifier.citedreferenceMcMahon C, Baier AS, Pascolutti R, Wegrecki M, Zheng S, Ong JX, Erlandson SC, Hilger D, Rasmussen SGF, Ring AM et al. ( 2018 ) Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat Struct Mol Biol 25, 289 – 296.
dc.identifier.citedreferenceUchański T, Zögg T, Yin J, Yuan D, Wohlkönig A, Fischer B, Rosenbaum DM, Kobilka BK, Pardon E & Steyaert J ( 2019 ) An improved yeast surface display platform for the screening of nanobody immune libraries. Sci Rep 9, 382.
dc.identifier.citedreferenceZimmermann I, Egloff P, Hutter CAJ, Arnold FM, Stohler P, Bocquet N, Hug MN, Huber S, Siegrist M, Hetemann L et al. ( 2018 ) Synthetic single domain antibodies for the conformational trapping of membrane proteins. eLife 7, e34317.
dc.identifier.citedreferenceNewstead S, Ferrandon S & Iwata S ( 2008 ) Rationalizing α‐helical membrane protein crystallization. Protein Sci 17, 466 – 472.
dc.identifier.citedreferenceKoide A, Gilbreth RN, Esaki K, Tereshko V & Koide S ( 2007 ) High‐affinity single‐domain binding proteins with a binary‐code interface. Proc Natl Acad Sci USA 104, 6632.
dc.identifier.citedreferenceSha F, Salzman G, Gupta A & Koide S ( 2017 ) Monobodies and other synthetic binding proteins for expanding protein science. Protein Sci 26, 910 – 924.
dc.identifier.citedreferenceKaratan E, Merguerian M, Han Z, Scholle MD, Koide S & Kay BK ( 2004 ) Molecular recognition properties of FN3 monobodies that bind the Src SH3 domain. Chem Biol 11, 835 – 844.
dc.identifier.citedreferenceHantschel O, Biancalana M & Koide S ( 2020 ) Monobodies as enabling tools for structural and mechanistic biology. Curr Opin Struct Biol 60, 167 – 174.
dc.identifier.citedreferenceKermani AA, Macdonald CB, Gundepudi R & Stockbridge RB ( 2018 ) Guanidinium export is the primal function of SMR family transporters. Proc Natl Acad Sci USA 115, 3060.
dc.identifier.citedreferenceKermani AA, Macdonald CB, Burata OE, Ben Koff B, Koide A, Denbaum E, Koide S & Stockbridge RB ( 2020 ) The structural basis of promiscuity in small multidrug resistance transporters. Nat Commun 11, 6064.
dc.identifier.citedreferenceStockbridge RB, Kolmakova‐Partensky L, Shane T, Koide A, Koide S, Miller C & Newstead S ( 2015 ) Crystal structures of a double‐barrelled fluoride ion channel. Nature 525, 548 – 551.
dc.identifier.citedreferenceSalzman GS, Ackerman SD, Ding C, Koide A, Leon K, Luo R, Stoveken HM, Fernandez CG, Tall GG, Piao X et al. ( 2016 ) Structural basis for regulation of GPR56/ADGRG1 by Its alternatively spliced extracellular domains. Neuron 91, 1292 – 1304.
dc.identifier.citedreferenceLast NB, Stockbridge RB, Wilson AE, Shane T, Kolmakova‐Partensky L, Koide A, Koide S & Miller C ( 2018 ) A CLC‐type F(‐)/H(+) antiporter in ion‐swapped conformations. Nat Struct Mol Biol 25, 601 – 606.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.