Show simple item record

Chaotic Organic Crystal Phosphorescent Patterns for Physical Unclonable Functions

dc.contributor.authorIm, Healin
dc.contributor.authorYoon, Jinsik
dc.contributor.authorChoi, Jinho
dc.contributor.authorKim, Jinsang
dc.contributor.authorBaek, Seungho
dc.contributor.authorPark, Dong Hyuk
dc.contributor.authorPark, Wook
dc.contributor.authorKim, Sunkook
dc.date.accessioned2021-11-02T00:45:18Z
dc.date.available2022-12-01 20:45:16en
dc.date.available2021-11-02T00:45:18Z
dc.date.issued2021-11
dc.identifier.citationIm, Healin; Yoon, Jinsik; Choi, Jinho; Kim, Jinsang; Baek, Seungho; Park, Dong Hyuk; Park, Wook; Kim, Sunkook (2021). "Chaotic Organic Crystal Phosphorescent Patterns for Physical Unclonable Functions." Advanced Materials 33(44): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/170813
dc.description.abstractSince the 4th Industrial Revolution, Internet of Things based environments have been widely used in various fields ranging from mobile to medical devices. Simultaneously, information leakage and hacking risks have also increased significantly, and secure authentication and security systems are constantly required. Physical unclonable functions (PUF) are in the spotlight as an alternative. Chaotic phosphorescent patterns are developed based on an organic crystal and atomic seed heterostructure for security labels with PUFs. Phosphorescent organic crystal patterns are formed on MoS2. They seem similar on a macroscopic scale, whereas each organic crystal exhibits highly disorder features on the microscopic scale. In image analysis, an encoding capacity as a single PUF domain achieves more than 1017 on a MoS2 small fragment with lengths of 25 µm. Therefore, security labels with phosphorescent PUFs can offer superior randomness and no‐cloning codes, possibly becoming a promising security strategy for authentication processes.Chaotic phosphorescent patterns are developed based on an organic crystal and MoS2 heterostructure for physical unclonable functions (PUFs). The phosphorescent patterns on the MoS2 seem similar on the macroscopic scale, whereas each organic crystal exhibits highly disorder features on the microscopic scale. In image analysis, the encoding capacity as a single PUF domain achieves more than 1017 on a MoS2 small fragment.
dc.publisherWiley Periodicals, Inc.
dc.publisherIEEE
dc.subject.otherMoS2
dc.subject.othersecurity labels
dc.subject.otherphysical unclonable functions
dc.subject.otherorganic crystal patterns
dc.titleChaotic Organic Crystal Phosphorescent Patterns for Physical Unclonable Functions
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170813/1/adma202102542_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170813/2/adma202102542.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170813/3/adma202102542-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/adma.202102542
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceJ. Liu, C. Zhu, K. Liu, Y. Jiang, Y. Song, J. S. Francisco, X. C. Zeng, J. Wang, Proc. Natl. Acad. Sci. USA 2017, 114, 11285.
dc.identifier.citedreferenceE. Sawicki, H. Johnson, Microchem. J. 1964, 8, 85.
dc.identifier.citedreferenceD. R. Kearns, W. A. Case, J. Am. Chem. Soc. 1966, 88, 5087.
dc.identifier.citedreferenceH. Ma, H. Yu, Q. Peng, Z. An, D. Wang, Z. Shuai, J. Phys. Chem. Lett. 2019, 10, 6948.
dc.identifier.citedreferenceF. Kobayashi, R. Ohtani, S. Teraoka, M. Yoshida, M. Kato, Y. Zhang, L. F. Lindoy, S. Hayami, M. Nakamura, Chem. ‐ Eur. J. 2019, 25, 5875.
dc.identifier.citedreferenceA. M. J. van Eijk, G. B. Ekelmans, W. Klinkenberg, A. H. Huizer, C. A. G. O. Varma, J. Chem. Soc., Faraday Trans. 1990, 86, 2083.
dc.identifier.citedreferenceA. K. Singh, P. Kumar, D. J. Late, A. Kumar, S. Patel, J. Singh, Appl. Mater. Today 2018, 13, 242.
dc.identifier.citedreferenceV. van der Leest, P. Tuyls, in 2013 Design, Automation & Test in Europe Conf. & Exhibition (DATE), IEEE, Piscataway, NJ, USA 2013, pp. 1137 – 1142, https://doi.org/10.7873/DATE.2013.238.
dc.identifier.citedreferenceZ. Hu, J. M. M. L. Comeras, H. Park, J. Tang, A. Afzali, G. S. Tulevski, J. B. Hannon, M. Liehr, S.‐J. Han, Nat. Nanotechnol. 2016, 11, 559.
dc.identifier.citedreferenceJ. Zhang, K. L. McCann, C. Qiu, L. E. Gonzalez, S. J. Baserga, T. M. T. Hall, Nat. Commun. 2016, 7, 13085.
dc.identifier.citedreferenceR. Pappu, Science 2002, 297, 2026.
dc.identifier.citedreferenceM. R. Carro‐Temboury, R. Arppe, T. Vosch, T. J. Sørensen, Sci. Adv. 2018, 4, e1701384.
dc.identifier.citedreferenceT. Takahashi, Y. Kudo, R. Ishiyama, in 2017 Fifteenth IAPR Int. Conf. on Machine Vision Applications (MVA), IEEE, Piscataway, NJ, USA 2017, pp. 202 – 206, https://doi.org/10.23919/MVA.2017.7986836.
dc.identifier.citedreferenceR. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, C. Yang, Sci. Rep. 2013, 3, 3543.
dc.identifier.citedreferenceB. Wigger, T. Meissner, A. Förste, V. Jetter, A. Zimmermann, Sci. Rep. 2018, 8, 4738.
dc.identifier.citedreferenceY. Geng, J. Noh, I. Drevensek‐Olenik, R. Rupp, G. Lenzini, J. P. F. Lagerwall, Sci. Rep. 2016, 6, 26840.
dc.identifier.citedreferenceR. Arppe, T. J. Sørensen, Nat. Rev. Chem. 2017, 1, 0031.
dc.identifier.citedreferenceY. Gao, S. F. Al‐Sarawi, D. Abbott, Nat. Electron. 2020, 3, 81.
dc.identifier.citedreferenceX. Xu, A. Rahmati, D. E. Holcomb, K. Fu, W. Burleson, IEEE Trans. Comput.‐Aided Des. Integr. Circuits Syst. 2015, 34, 903.
dc.identifier.citedreferenceD. E. Holcomb, W. P. Burleson, K. Fu, IEEE Trans. Comput. 2009, 58, 1198.
dc.identifier.citedreferenceJ. W. Leem, M. S. Kim, S. H. Choi, S.‐R. Kim, S.‐W. Kim, Y. M. Song, R. J. Young, Y. L. Kim, Nat. Commun. 2020, 11, 328.
dc.identifier.citedreferenceY. Liu, F. Han, F. Li, Y. Zhao, M. Chen, Z. Xu, X. Zheng, H. Hu, J. Yao, T. Guo, W. Lin, Y. Zheng, B. You, P. Liu, Y. Li, L. Qian, Nat. Commun. 2019, 10, 2409.
dc.identifier.citedreferenceH. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Nature 2011, 475, 364.
dc.identifier.citedreferenceW. Wang, L. Wang, G. Dai, W. Deng, X. Zhang, J. Jie, X. Zhang, Nano‐Micro Lett. 2017, 9, 52.
dc.identifier.citedreferenceQ. Wang, E. J. Juarez‐Perez, S. Jiang, L. Qiu, L. K. Ono, T. Sasaki, X. Wang, Y. Shi, Y. Zheng, Y. Qi, Y. Li, J. Phys. Chem. Lett. 2018, 9, 1318.
dc.identifier.citedreferenceJ. Jang, S. Nam, K. Im, J. Hur, S. N. Cha, J. Kim, H. Bin Son, H. Suh, M. A. Loth, J. E. Anthony, J.‐J. Park, C. E. Park, J. M. Kim, K. Kim, Adv. Funct. Mater. 2012, 22, 1005.
dc.identifier.citedreferenceA. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, Z. Bao, Nature 2006, 444, 913.
dc.identifier.citedreferenceH. Wang, F. Fontein, J. Li, L. Huang, L. Jiang, H. Fuchs, W. Wang, Y. Wang, L. Chi, ACS Appl. Mater. Interfaces 2020, 12, 48854.
dc.identifier.citedreferenceY. Lee, J. Lee, H. Bark, I.‐K. Oh, G. H. Ryu, Z. Lee, H. Kim, J. H. Cho, J.‐H. Ahn, C. Lee, Nanoscale 2014, 6, 2821.
dc.identifier.citedreferenceO. Bolton, K. Lee, H.‐J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205.
dc.identifier.citedreferenceE. Cho, J. Choi, S. Jo, D. Park, Y. K. Hong, D. Kim, T. S. Lee, ChemPlusChem 2019, 84, 1130.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.