Show simple item record

A 3D MHD‐Particle Tracing Model of Na+ Energization on Mercury’s Dayside

dc.contributor.authorGlass, Austin N.
dc.contributor.authorRaines, Jim M.
dc.contributor.authorJia, Xianzhe
dc.contributor.authorTenishev, Valeriy
dc.contributor.authorShou, Yinsi
dc.contributor.authorAizawa, Sae
dc.contributor.authorSlavin, James A.
dc.date.accessioned2021-11-02T00:45:29Z
dc.date.available2022-12-01 20:45:27en
dc.date.available2021-11-02T00:45:29Z
dc.date.issued2021-11
dc.identifier.citationGlass, Austin N.; Raines, Jim M.; Jia, Xianzhe; Tenishev, Valeriy; Shou, Yinsi; Aizawa, Sae; Slavin, James A. (2021). "A 3D MHD‐Particle Tracing Model of Na+ Energization on Mercury’s Dayside." Journal of Geophysical Research: Space Physics 126(11): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/170819
dc.description.abstractData collected by the Fast Imaging Plasma Spectrometer (FIPS) aboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft showed singly charged Na+‐group ions at energies of between 1 and 13 keV in Mercury’s northern planetary cusp. Most of these ions are likely formed by either photoionization or charge exchange of exospheric Na atoms, with initial energies of approximately 1 eV or less. FIPS observations did not establish which acceleration mechanism most reasonably accounts for this energy gain. Using the Adaptive Mesh Particle Simulator (AMPS) model, we undertake kinetic simulations of 1 eV Na+ test particles through the electric and magnetic fields output from the Block Adaptive Tree Solar wind Roe‐type Upwind Scheme (BATSRUS) global magnetohydrodynamic (MHD) model of Mercury’s magnetosphere, in search of plausible explanations for the source of this energization. We find that Na+ with initial energy of 1 eV are readily picked up by the Dungey cycle return flow in the dayside magnetosphere. In some cases, this flow provides the energy for the ions to escape into the magnetosheath, and in other cases it energizes the ions to hundreds of eV before they pass immediately into the cusp. Those that escape can be rapidly picked up into the magnetosheath flow, where they are accelerated by pickup again up to tens of keV. These one‐ and two‐stage pickup processes on Mercury’s dayside can account for the energies of many of the Na+ ions observed in Mercury’s northern magnetospheric cusp by MESSENGER.Plain Language SummaryData collected in orbit at Mercury showed sodium ions in the northern planetary cusp at high energies. The processes that likely create these ions are only responsible for 0.01%–0.1% of that high energy, and no mechanism previously known to operate at Mercury can account for the difference. We model the Mercury system, and the paths of ions through that system, in search of such a mechanism. We find two mechanisms, both involving energization into proton flows, that explain the data observations.Key PointsSodium ions (Na+) with initial energy of 1 eV are energized by Dungey cycle return flow in the dayside dipolar regionNa+ are not trapped within the dayside dipolar region of MercuryOne‐ and two‐stage pickup processes can energize Na+ up to tens of keV entirely on the dayside
dc.publisherWiley Periodicals, Inc.
dc.titleA 3D MHD‐Particle Tracing Model of Na+ Energization on Mercury’s Dayside
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170819/1/jgra56804_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170819/2/jgra56804.pdf
dc.identifier.doi10.1029/2021JA029587
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSlavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., et al. ( 2009 ). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324 ( 5927 ), 606 – 610. https://doi.org/10.1126/science.1172011
dc.identifier.citedreferenceNajib, D., Nagy, A. F., Tóth, G., & Ma, Y. ( 2011 ). Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars. Journal of Geophysical Research, 116, A05204. https://doi.org/10.1029/2010JA016272
dc.identifier.citedreferenceNewell, P. T., & Meng, C.‐I. ( 1988 ). Hemispherical asymmetry in cusp precipitation near solstices. Journal of Geophysical Research, 93 ( A4 ), 2643 – 2648. https://doi.org/10.1029/JA093iA04p02643
dc.identifier.citedreferencePaschalidis, N. P., Sarris, E. T., Krimigis, S. M., McEntire, R. W., Levine, M. D., Daglis, I. A., & Anagnostopoulos, G. C. ( 1994 ). Energetic ion distributions on both sides of the Earth’s magnetopause. Journal of Geophysical Research, 99 ( A5 ), 8687 – 8703. https://doi.org/10.1029/93JA03563
dc.identifier.citedreferencePowell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., & De Zeeuw, D. L. ( 1999 ). A solution‐adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154 ( 2 ), 284 – 309. https://doi.org/10.1006/jcph.1999.6299
dc.identifier.citedreferenceRaines, J. M., Gershman, D. J., Slavin, J. A., Zurbuchen, T. H., Korth, H., Anderson, B. J., & Solomon, S. C. ( 2014 ). Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions. Journal of Geophysical Research: Space Physics, 119, 6587 – 6602. https://doi.org/10.1002/2014JA020120
dc.identifier.citedreferenceSarkango, Y., Jia, X., & Toth, G. ( 2019 ). Global MHD simulations of the response of Jupiter’s magnetosphere and ionosphere to changes in the solar wind and IMF. Journal of Geophysical Research: Space Physics, 124, 5317 – 5341. https://doi.org/10.1029/2019JA026787
dc.identifier.citedreferenceShue, J.‐H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., & Singer, H. J. ( 1997 ). A new functional form to study the solar wind control of the magnetopause size and shape. Journal of Geophysical Research, 102 ( A5 ), 9497 – 9511. https://doi.org/10.1029/97JA00196
dc.identifier.citedreferenceSiscoe, G. L., Ness, N. F., & Yeates, C. M. ( 1975 ). Substorms on Mercury? Journal of Geophysical Research, 80 ( 31 ), 4359 – 4363. https://doi.org/10.1029/JA080i031p04359
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., et al. ( 2010 ). MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329 ( 5992 ), 665 – 668. https://doi.org/10.1126/science.1188067
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., et al. ( 2014 ). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119, 8087 – 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceSlavin, J. A., & Holzer, R. E. ( 1981 ). Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape. Journal of Geophysical Research, 86 ( A13 ), 11401 – 11418. https://doi.org/10.1029/JA086iA13p11401
dc.identifier.citedreferenceSmith, M. F., & Lockwood, M. ( 1996 ). Earth’s magnetospheric cusps. Reviews of Geophysics, 34 ( 2 ), 233 – 260. https://doi.org/10.1029/96RG00893
dc.identifier.citedreferenceSolomon, S. C., McNutt, R. L., Gold, R. E., & Domingue, D. L. ( 2007 ). MESSENGER mission overview. Space Science Reviews, 131 ( 1 ), 3 – 39. https://doi.org/10.1007/s11214-007-9247-6
dc.identifier.citedreferenceTenishev, V., Combi, M., & Davidsson, B. ( 2008 ). A global kinetic model for cometary comae: The evolution of the coma of the Rosetta target comet Churyumov‐Gerasimenko throughout the mission. The Astrophysical Journal, 685 ( 1 ), 659 – 677. https://doi.org/10.1086/590376
dc.identifier.citedreferenceTenishev, V., Combi, M.‐R., Jia, X., Rubin, M., & Raines, J. ( 2013 ). Kinetic modeling of the sodium distribution in the Hermean surface‐bound exosphere. In AAS/Division for Planetary Sciences Meeting Abstracts (Vol. 45, p. 114.02 ).
dc.identifier.citedreferenceTenishev, V., Shou, Y., Borovikov, D., Lee, Y., Fougere, N., Michael, A., & Combi, M. R. ( 2021 ). Application of the Monte Carlo method in modeling dusty gas, dust in plasma, and energetic ions in planetary, magnetospheric, and heliospheric environments. Journal of Geophysical Research: Space Physics, 126, e2020JA028242. https://doi.org/10.1029/2020JA028242
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., et al. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceWinslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., et al. ( 2013 ). Mercury’s magnetopause and bow shock from MESSENGER magnetometer observations. Journal of Geophysical Research: Space Physics, 118, 2213 – 2227. https://doi.org/10.1002/jgra.50237
dc.identifier.citedreferenceYagi, M., Seki, K., Matsumoto, Y., Delcourt, D. C., & Leblanc, F. ( 2017 ). Global structure and sodium ion dynamics in Mercury’s magnetosphere with the offset dipole. Journal of Geophysical Research: Space Physics, 122, 10990 – 11002. https://doi.org/10.1002/2017JA024082
dc.identifier.citedreferenceZurbuchen, T. H., Gloeckler, G., Cain, J. C., Lasley, S. E., & Shanks, W. ( 1998 ). Low‐weight plasma instrument to be used in the inner heliosphere. In Proceedings of SPIE (Vol. 3442 ). https://doi.org/10.1117/12.330260
dc.identifier.citedreferenceZurbuchen, T. H., Raines, J. M., Slavin, J. A., Gershman, D. J., Gilbert, J. A., Gloeckler, G., et al. ( 2011 ). MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science, 333 ( 6051 ), 1862 – 1865. https://doi.org/10.1126/science.1211302
dc.identifier.citedreferenceAnderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The magnetometer instrument on MESSENGER. Space Science Reviews, 131 ( 1 ), 417 – 450. https://doi.org/10.1007/s11214-007-9246-7
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., et al. ( 2011 ). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333 ( 6051 ), 1859 – 1862. https://doi.org/10.1126/science.1211001
dc.identifier.citedreferenceAndrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., et al. ( 2007 ). The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft. Space Science Reviews, 131 ( 1 ), 523 – 556. https://doi.org/10.1007/s11214-007-9272-5
dc.identifier.citedreferenceCassidy, T. A., & Johnson, R. E. ( 2005 ). Monte Carlo model of sputtering and other ejection processes within a regolith. Icarus, 176 ( 2 ), 499 – 507. https://doi.org/10.1016/j.icarus.2005.02.013
dc.identifier.citedreferenceCowley, S. W. H., & Owen, C. J. ( 1989 ). A simple illustrative model of open flux tube motion over the dayside magnetopause. Planetary and Space Science, 37 ( 11 ), 1461 – 1475. https://doi.org/10.1016/0032-0633(89)90116-5
dc.identifier.citedreferenceDelcourt, D. C., Grimald, S., Leblanc, F., Berthelier, J.‐J., Millilo, A., Mura, A., et al. ( 2003 ). A quantitative model of the planetary Na + contribution to Mercury’s magnetosphere. Annales Geophysicae, 21 ( 8 ), 1723 – 1736. https://doi.org/10.5194/angeo-21-1723-2003
dc.identifier.citedreferenceDelcourt, D. C., Moore, T. E., Orsini, S., Millilo, A., & Sauvaud, J.‐A. ( 2002 ). Centrifugal acceleration of ions near Mercury. Geophysical Research Letters, 29 ( 12 ), 1591. https://doi.org/10.1029/2001GL013829
dc.identifier.citedreferenceDelcourt, D. C., Seki, K., Terada, N., & Miyoshi, Y. ( 2005 ). Electron dynamics during substorm dipolarization in Mercury’s magnetosphere. Annales Geophysicae, 23 ( 10 ), 3389 – 3398. https://doi.org/10.5194/angeo-23-3389-2005
dc.identifier.citedreferenceDelcourt, D. C., Seki, K., Terada, N., & Moore, T. E. ( 2012 ). Centrifugally stimulated exospheric ion escape at Mercury. Geophysical Research Letters, 39, L22105. https://doi.org/10.1029/2012GL054085
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., et al. ( 2013 ). MESSENGER observations of magnetopause structure and dynamics at Mercury. Journal of Geophysical Research: Space Physics, 118, 997 – 1008. https://doi.org/10.1002/jgra.50123
dc.identifier.citedreferenceDungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6 ( 2 ), 47 – 48. https://doi.org/10.1103/PhysRevLett.6.47
dc.identifier.citedreferenceFougere, N., Altwegg, K., Berthelier, J.‐J., Bieler, A., Bockelée‐Morvan, D., Calmonte, U., et al. ( 2016 ). Three‐dimensional direct simulation Monte‐Carlo modeling of the coma of comet 67P/Churyumov‐Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta. Astronomy & Astrophysics, 588, A134. https://doi.org/10.1051/0004-6361/201527889
dc.identifier.citedreferenceGombosi, T. I., Tóth, G., De Zeeuw, D. L., Hansen, K. C., Kabin, K., & Powell, K. G. ( 2002 ). Semirelativistic magnetohydrodynamics and physics‐based convergence acceleration. Journal of Computational Physics, 177 ( 1 ), 176 – 205. https://doi.org/10.1006/jcph.2002.7009
dc.identifier.citedreferenceJasinski, J. M., Slavin, J. A., Raines, J. M., & DiBraccio, G. A. ( 2017 ). Mercury’s solar wind interaction as characterized by magnetospheric plasma mantle observations with MESSENGER. Journal of Geophysical Research: Space Physics, 122, 12153 – 12169. https://doi.org/10.1002/2017JA024594
dc.identifier.citedreferenceJia, X., Hansen, K. C., Gombosi, T. I., Kivelson, M. G., Tóth, G., DeZeeuw, D. L., & Ridley, A. J. ( 2012 ). Magnetospheric configuration and dynamics of Saturn’s magnetosphere: A global MHD simulation. Journal of Geophysical Research, 117, A05225. https://doi.org/10.1029/2012JA017575
dc.identifier.citedreferenceJia, X., Kivelson, M. G., & Gombosi, T. I. ( 2012 ). Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere. Journal of Geophysical Research, 117, A04215. https://doi.org/10.1029/2011JA017367
dc.identifier.citedreferenceJia, X., Slavin, J. A., Gombosi, T. I., Daldorff, L. K. S., Toth, G., & van der Holst, B. ( 2015 ). Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. Journal of Geophysical Research: Space Physics, 120, 4763 – 4775. https://doi.org/10.1002/2015JA021143
dc.identifier.citedreferenceJia, X., Slavin, J. A., Poh, G., DiBraccio, G. A., Toth, G., Chen, Y., et al. ( 2019 ). MESSENGER observations and global simulations of highly compressed magnetosphere events at Mercury. Journal of Geophysical Research: Space Physics, 124, 229 – 247. https://doi.org/10.1029/2018JA026166
dc.identifier.citedreferenceKallio, E., & Janhunen, P. ( 2003 ). Solar wind and magnetospheric ion impact on Mercury’s surface. Geophysical Research Letters, 30 ( 17 ), 1877. https://doi.org/10.1029/2003GL017842
dc.identifier.citedreferenceLeblanc, F., & Johnson, R. E. ( 2003 ). Mercury’s sodium exosphere. Icarus, 164 ( 2 ), 261 – 281. https://doi.org/10.1016/S0019-1035(03)00147-7
dc.identifier.citedreferenceMa, Y., Nagy, A. F., Hansen, K. C., DeZeeuw, D. L., Gombosi, T. I., & Powell, K. G. ( 2002 ). Three‐dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields. Journal of Geophysical Research, 107 ( A10 ), 1282. https://doi.org/10.1029/2002JA009293
dc.identifier.citedreferenceMöbius, E., Hovestadt, D., Klecker, B., Scholer, M., Gloeckler, G., & Ipavich, F. M. ( 1985 ). Direct observation of He + pick‐up ions of interstellar origin in the solar wind. Nature, 318 ( 6045 ), 426 – 429. https://doi.org/10.1038/318426a0
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.