Show simple item record

Tree growth increases through opposing above‐ground and below‐ground resource strategies

dc.contributor.authorWeemstra, Monique
dc.contributor.authorZambrano, Jenny
dc.contributor.authorAllen, David
dc.contributor.authorUmaña, María Natalia
dc.date.accessioned2021-11-02T00:45:39Z
dc.date.available2022-11-01 20:45:38en
dc.date.available2021-11-02T00:45:39Z
dc.date.issued2021-10
dc.identifier.citationWeemstra, Monique; Zambrano, Jenny; Allen, David; Umaña, María Natalia (2021). "Tree growth increases through opposing above‐ground and below‐ground resource strategies." Journal of Ecology (10): 3502-3512.
dc.identifier.issn0022-0477
dc.identifier.issn1365-2745
dc.identifier.urihttps://hdl.handle.net/2027.42/170826
dc.description.abstractStudying functional traits and their relationships with tree growth has proved a powerful approach for understanding forest structure. These relationships are often expected to follow the classical resource economics perspective, where acquisitive leaves combined with acquisitive roots are expected to enhance resource uptake and tree growth. However, evidence for coordinated leaf and roots trait effects on growth is scarce and it remains poorly understood how these traits together determine tree growth. Here, we tested how leaf and root trait combinations explain tree growth.We collected data on leaf and root traits of 10 common tree species, and on soil carbon (C) and nitrogen (N) concentrations in a temperate forest in Michigan, US. Tree growth was calculated as the stem diameter increment between three censuses measured across 13,000 trees and modelled as a function of different combinations of leaf and root traits and soil properties.The two best models explaining tree growth included both specific leaf area (SLA), root diameter and soil C or N concentration, but their effects on growth were contingent on each other: thick roots were associated with high growth rates but only for trees with low SLA, and high SLA was related to fast growth but only for trees with thin roots. Soil C and N% negatively impacted the growth of trees with high SLA or high root diameter.Synthesis. In this study, resource economics did not explain the relationships between leaf and root traits and tree growth rates. First, for trees with low or intermediate SLA, thick roots may be considered as acquisitive, as they were associated with faster tree growth. Second, trees did not coordinate their leaf and root traits according to plant resource economics but enhanced their growth rates by combining thick (acquisitive) roots with conservative (low SLA) leaves or vice versa. Our study indicates the need to re‐evaluate the combined role of leaves and roots to unveil the interacting drivers of tree growth and, ultimately, of forest structure and suggests that different adaptive whole‐tree phenotypes coexist.Trees did not coordinate their leaf and root traits according to resource economics to improve their growth. Instead, they grew faster by combining conservative leaves and thick, acquisitive roots, and vice versa. The faster growth of thick‐rooted trees may be attributed to higher mycorrhization, which enhances soil resource uptake. Thus, traits of one organ may modulate the effects of another organ on growth, suggesting the local coexistence of different whole‐tree phenotypes.
dc.publisherWiley Periodicals, Inc.
dc.publisherMuseum of Zoology, University of Michigan
dc.subject.othersoil gradient
dc.subject.otherForestGEO network
dc.subject.otherfunctional traits
dc.subject.otherleaves
dc.subject.otherresource economics
dc.subject.otherroots
dc.subject.othertemperate forest
dc.subject.othertree growth
dc.titleTree growth increases through opposing above‐ground and below‐ground resource strategies
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170826/1/jec13729.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170826/2/jec13729_am.pdf
dc.identifier.doi10.1111/1365-2745.13729
dc.identifier.sourceJournal of Ecology
dc.identifier.citedreferenceMcCormack, M. L., & Iversen, C. M. ( 2019 ). Physical and functional constraints on viable belowground acquisition strategies. Frontiers in Plant Science, 10, 1215. https://doi.org/10.3389/fpls.2019.01215
dc.identifier.citedreferenceKramer‐Walter, K. R., Bellingham, P. J., Millar, T. R., Smissen, R. D., Richardson, S. J., & Laughlin, D. C. ( 2016 ). Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology, 104 ( 5 ), 1299 – 1310. https://doi.org/10.1111/1365‐2745.12562
dc.identifier.citedreferenceKuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. ( 2017 ). lmerTest PACKAGE: Tests in linear mixed effects models. Journal of Statistical Software, 82 ( 13 ). https://doi.org/10.18637/jss.v082.i13
dc.identifier.citedreferenceLaughlin, D. C., & Messier, J. ( 2015 ). Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends in Ecology & Evolution, 30 ( 8 ), 10. https://doi.org/10.1016/j.tree.2015.06.003
dc.identifier.citedreferenceMa, Z., Guo, D., Xu, X., Lu, M., Bardgett, R. D., Eissenstat, D. M., McCormack, M. L., & Hedin, L. O. ( 2018 ). Evolutionary history resolves global organization of root functional traits. Nature, 555 ( 7694 ), 94 – 97. https://doi.org/10.1038/nature25783
dc.identifier.citedreferenceMarks, C. O., & Lechowicz, M. J. ( 2006 ). Alternative designs and the evolution of functional diversity. The American Naturalist, 167 ( 1 ), 55 – 66. https://doi.org/10.1086/498276
dc.identifier.citedreferenceMartínez‐Vilalta, J., Mencuccini, M., Vayreda, J., & Retana, J. ( 2010 ). Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species: Determinants of demographic rates across species. Journal of Ecology, 98 ( 6 ), 1462 – 1475. https://doi.org/10.1111/j.1365‐2745.2010.01718.x
dc.identifier.citedreferenceMcCormack, M. L., Adams, T. S., Smithwick, E. A. H., & Eissenstat, D. M. ( 2012 ). Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist, 195 ( 4 ), 823 – 831. https://doi.org/10.1111/j.1469‐8137.2012.04198.x
dc.identifier.citedreferenceDuursma, R. ( 2021 ). bootpredictlme4: Predict method for lme4 with bootstrap. https://github.com/RemkoDuursma/bootpredictlme4
dc.identifier.citedreferenceMommer, L., & Weemstra, M. ( 2012 ). The role of roots in the resource economics spectrum: Commentary. New Phytologist, 195 ( 4 ), 725 – 727. https://doi.org/10.1111/j.1469‐8137.2012.04247.x
dc.identifier.citedreferenceNakagawa, S., & Schielzeth, H. ( 2013 ). A general and simple method for obtaining R 2 from generalized linear mixed‐effects models. Methods in Ecology and Evolution, 4 ( 2 ), 133 – 142. https://doi.org/10.1111/j.2041‐210x.2012.00261.x
dc.identifier.citedreferenceOrdoñez, J. C., van Bodegom, P. M., Witte, J.‐P.‐M., Wright, I. J., Reich, P. B., & Aerts, R. ( 2009 ). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18 ( 2 ), 137 – 149. https://doi.org/10.1111/j.1466‐8238.2008.00441.x
dc.identifier.citedreferenceOstonen, I., Lohmus, K., Helmisaari, H.‐S., Truu, J., & Meel, S. ( 2007 ). Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiology, 27 ( 11 ), 1627 – 1634. https://doi.org/10.1093/treephys/27.11.1627
dc.identifier.citedreferencePaine, C. E. T., Amissah, L., Auge, H., Baraloto, C., Baruffol, M., Bourland, N., Bruelheide, H., Daïnou, K., de Gouvenain, R. C., Doucet, J.‐L., Doust, S., Fine, P. V. A., Fortunel, C., Haase, J., Holl, K. D., Jactel, H., Li, X., Kitajima, K., Koricheva, J., … Hector, A. ( 2015 ). Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology, 103 ( 4 ), 978 – 989. https://doi.org/10.1111/1365‐2745.12401
dc.identifier.citedreferencePoorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. ( 2009 ). Causes and consequences of variation in leaf mass per area (LMA): A meta‐analysis. New Phytologist, 182 ( 3 ), 565 – 588. https://doi.org/10.1111/j.1469‐8137.2009.02830.x
dc.identifier.citedreferencePoorter, L., Wright, S. J., Paz, H., Ackerly, D. D., Condit, R., Ibarra‐Manríquez, G., Harms, K. E., Licona, J. C., Martínez‐Ramos, M., Mazer, S. J., Muller‐Landau, H. C., Peña‐Claros, M., Webb, C. O., & Wright, I. J. ( 2008 ). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89 ( 7 ), 1908 – 1920. https://doi.org/10.1890/07‐0207.1
dc.identifier.citedreferenceR Core Team. ( 2021 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
dc.identifier.citedreferenceReich, P. B. ( 2014 ). The world‐wide ‘fast‐slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 102 ( 2 ), 275 – 301. https://doi.org/10.1111/1365‐2745.12211
dc.identifier.citedreferenceReich, P. B., Tjoelker, M. G., Walters, M. B., Vanderklein, D. W., & Buschena, C. ( 1998 ). Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Functional Ecology, 12 ( 3 ), 327 – 338. https://doi.org/10.1046/j.1365‐2435.1998.00208.x
dc.identifier.citedreferenceReich, P. B., Walters, M. B., & Ellsworth, D. S. ( 1997 ). From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94 ( 25 ), 13730 – 13734. https://doi.org/10.1073/pnas.94.25.13730
dc.identifier.citedreferenceReich, P. B., Wright, I. J., Cavender‐Bares, J., Craine, J. M., Oleksyn, J., Westoby, M., & Walters, M. B. ( 2003 ). The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences, 164 ( S3 ), S143 – S164. https://doi.org/10.1086/374368
dc.identifier.citedreferenceUmaña, M., Swenson, N. G., Marchand, P., Cao, M., & Zhang, C. (in press). Relating leaf traits to seedling performance in a tropical forest: Building a hierarchical functional framework. Ecology. https://doi.org/10.1002/ecy.3385
dc.identifier.citedreferenceVisser, M. D., Bruijning, M., Wright, S. J., Muller‐Landau, H. C., Jongejans, E., Comita, L. S., & Kroon, H. ( 2016 ). Functional traits as predictors of vital rates across the life cycle of tropical trees. Functional Ecology, 30 ( 2 ), 168 – 180. https://doi.org/10.1111/1365‐2435.12621
dc.identifier.citedreferenceWeemstra, M., Kiorapostolou, N., Ruijven, J., Mommer, L., Vries, J., & Sterck, F. ( 2020 ). The role of fine‐root mass, specific root length and life span in tree performance: A whole‐tree exploration. Functional Ecology, 34 ( 3 ), 575 – 585. https://doi.org/10.1111/1365‐2435.13520
dc.identifier.citedreferenceWeemstra, M., Mommer, L., Visser, E. J. W., Ruijven, J., Kuyper, T. W., Mohren, G. M. J., & Sterck, F. J. ( 2016 ). Towards a multidimensional root trait framework: A tree root review. New Phytologist, 211 ( 4 ), 1159 – 1169. https://doi.org/10.1111/nph.14003
dc.identifier.citedreferenceWeemstra, M., Sterck, F. J., Visser, E. J. W., Kuyper, T. W., Goudzwaard, L., & Mommer, L. ( 2017 ). Fine‐root trait plasticity of beech ( Fagus sylvatica ) and spruce ( Picea abies ) forests on two contrasting soils. Plant and Soil, 415 ( 1–2 ), 175 – 188. https://doi.org/10.1007/s11104‐016‐3148‐y
dc.identifier.citedreferenceWithington, J. M., Reich, P. B., Oleksyn, J., & Eissenstat, D. M. ( 2006 ). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76 ( 3 ), 381 – 397. https://doi.org/10.1890/0012‐9615(2006)076[0381:COSALS]2.0.CO;2
dc.identifier.citedreferenceWright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender‐Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., … Villar, R. ( 2004 ). The worldwide leaf economics spectrum. Nature, 428 ( 6985 ), 821 – 827. https://doi.org/10.1038/nature02403
dc.identifier.citedreferenceComas, L. H., Mueller, K. E., Taylor, L. L., Midford, P. E., Callahan, H. S., & Beerling, D. J. ( 2012 ). Evolutionary patterns and biogeochemical significance of angiosperm root traits. International Journal of Plant Sciences, 173 ( 6 ), 584 – 595. https://doi.org/10.1086/665823
dc.identifier.citedreferenceCornelissen, J., Aerts, R., Cerabolini, B., Werger, M., & van der Heijden, M. ( 2001 ). Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia, 129 ( 4 ), 611 – 619. https://doi.org/10.1007/s004420100752
dc.identifier.citedreferenceCornelissen, J. H. C., Diez, P. C., & Hunt, R. ( 1996 ). Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. The Journal of Ecology, 84 ( 5 ), 755. https://doi.org/10.2307/2261337
dc.identifier.citedreferenceAdams, T. S., McCormack, M. L., & Eissenstat, D. M. ( 2013 ). Foraging strategies in trees of different root morphology: The role of root lifespan. Tree Physiology, 33 ( 9 ), 940 – 948. https://doi.org/10.1093/treephys/tpt067
dc.identifier.citedreferenceAerts, R., & Chapin III, F. S. ( 2000 ). The mineral nutrition of wild plants revisited: A re‐evaluation of processes and patterns. Advances in Ecological Research, 30, 1 – 67. https://doi.org/10.1016/S0065‐2504(08)60016‐1
dc.identifier.citedreferenceAkaike, H. ( 1974 ). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19 ( 6 ), 716 – 723. https://doi.org/10.1109/TAC.1974.1100705
dc.identifier.citedreferenceAllen, D., Dick, C. W., Burnham, R. J., Perfecto, I., & Vandermeer, J. ( 2020 ). The Michigan Big Woods research plot at the Edwin S. George Reserve, Pickney, MI, USA (No. 207; Miscellaneous Publications). Museum of Zoology, University of Michigan. http://hdl.handle.net/2027.42/156251.
dc.identifier.citedreferenceAllen, D., Dick, C. W., Strayer, E., Perfecto, I., & Vandermeer, J. ( 2018 ). Scale and strength of oak–mesophyte interactions in a transitional oak–hickory forest. Canadian Journal of Forest Research, 48 ( 11 ), 1366 – 1372. https://doi.org/10.1139/cjfr‐2018‐0131
dc.identifier.citedreferenceAllen, D., Vandermeer, J., Dick, C., Perfecto, I., & Burnham, R. J. ( 2019 ). Michigan Big Woods research plot data [Data set]. University of Michigan ‐ Deep Blue. https://doi.org/10.7302/wx55‐kt18
dc.identifier.citedreferenceArguez, A., Durre, I., Applequist, S., Squires, M., Vose, R., Yin, X., & Bilotta, R. ( 2010 ). NOAA’s U.S. climate normals (1981–2010). NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5PN93JP
dc.identifier.citedreferenceArnold, S. J. ( 1983 ). Morphology, performance and fitness. American Zoologist, 23 ( 2 ), 347 – 361. https://doi.org/10.1093/icb/23.2.347
dc.identifier.citedreferenceBarton, K. ( 2019 ). MuMIn: Multi‐model inference (R package version 1.43.6) [Computer software]. https://CRAN.R‐project.org/package=MuMIn
dc.identifier.citedreferenceBates, D., Mächler, M., Bolker, B., & Walker, S. ( 2015 ). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67 ( 1 ). https://doi.org/10.18637/jss.v067.i01
dc.identifier.citedreferenceBergmann, J., Weigelt, A., van der Plas, F., Laughlin, D. C., Kuyper, T. W., Guerrero‐Ramirez, N., Valverde‐Barrantes, O. J., Bruelheide, H., Freschet, G. T., Iversen, C. M., Kattge, J., McCormack, M. L., Meier, I. C., Rillig, M. C., Roumet, C., Semchenko, M., Sweeney, C. J., van Ruijven, J., York, L. M., & Mommer, L. ( 2020 ). The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 6 ( 27 ). https://doi.org/10.1126/sciadv.aba3756
dc.identifier.citedreferenceBrundrett, M. C. ( 2002 ). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154 ( 2 ), 275 – 304. https://doi.org/10.1046/j.1469‐8137.2002.00397.x
dc.identifier.citedreferenceBrundrett, M., Murase, G., & Kendrick, B. ( 1990 ). Comparative anatomy of roots and mycorrhizae of common Ontario trees. Canadian Journal of Botany, 68 ( 3 ), 551 – 578. https://doi.org/10.1139/b90‐076
dc.identifier.citedreferenceChapin, F. S., Bloom, A. J., Field, C. B., & Waring, R. H. ( 1987 ). Plant responses to multiple environmental factors. BioScience, 37 ( 1 ), 49 – 57. https://doi.org/10.2307/1310177
dc.identifier.citedreferenceChen, W., Eissenstat, D. M., & Koide, R. T. ( 2018 ). Root diameter predicts the extramatrical hyphal exploration distance of the ectomycorrhizal fungal community. Ecosphere, 9 ( 4 ). https://doi.org/10.1002/ecs2.2202
dc.identifier.citedreferenceComas, L., Bouma, T., & Eissenstat, D. ( 2002 ). Linking root traits to potential growth rate in six temperate tree species. Oecologia, 132 ( 1 ), 34 – 43. https://doi.org/10.1007/s00442‐002‐0922‐8
dc.identifier.citedreferenceComas, L. H., & Eissenstat, D. M. ( 2004 ). Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology, 18 ( 3 ), 388 – 397. https://doi.org/10.1111/j.0269‐8463.2004.00835.x
dc.identifier.citedreferenceEissenstat, D. M. ( 1991 ). On the relationship between specific root length and the rate of root proliferation: A field study using citrus rootstocks. New Phytologist, 118 ( 1 ), 63 – 68. https://doi.org/10.1111/j.1469‐8137.1991.tb00565.x
dc.identifier.citedreferenceEissenstat, D. M. ( 1992 ). Costs and benefits of constructing roots of small diameter. Journal of Plant Nutrition, 15 ( 6–7 ), 763 – 782. https://doi.org/10.1080/01904169209364361
dc.identifier.citedreferenceEissenstat, D. M., Kucharski, J. M., Zadworny, M., Adams, T. S., & Koide, R. T. ( 2015 ). Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist, 208 ( 1 ), 114 – 124. https://doi.org/10.1111/nph.13451
dc.identifier.citedreferenceFreschet, G. T., & Roumet, C. ( 2017 ). Sampling roots to capture plant and soil functions. Functional Ecology, 31 ( 8 ), 1506 – 1518. https://doi.org/10.1111/1365‐2435.12883
dc.identifier.citedreferenceGibert, A., Gray, E. F., Westoby, M., Wright, I. J., & Falster, D. S. ( 2016 ). On the link between functional traits and growth rate: Meta‐analysis shows effects change with plant size, as predicted. Journal of Ecology, 104 ( 5 ), 1488 – 1503. https://doi.org/10.1111/1365‐2745.12594
dc.identifier.citedreferenceGreenwood, S., Ruiz‐Benito, P., Martínez‐Vilalta, J., Lloret, F., Kitzberger, T., Allen, C. D., Fensham, R., Laughlin, D. C., Kattge, J., Bönisch, G., Kraft, N. J. B., & Jump, A. S. ( 2017 ). Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, 20 ( 4 ), 539 – 553. https://doi.org/10.1111/ele.12748
dc.identifier.citedreferenceGrime, J. P. ( 1977 ). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111 ( 982 ), 1169 – 1194. https://doi.org/10.1086/283244
dc.identifier.citedreferenceGu, J., Yu, S., Sun, Y., Wang, Z., & Guo, D. ( 2011 ). Influence of root structure on root survivorship: An analysis of 18 tree species using a minirhizotron method. Ecological Research, 26 ( 4 ), 755 – 762. https://doi.org/10.1007/s11284‐011‐0833‐4
dc.identifier.citedreferenceHansson, K., Helmisaari, H.‐S., Sah, S. P., & Lange, H. ( 2013 ). Fine root production and turnover of tree and understorey vegetation in Scots pine, silver birch and Norway spruce stands in SW Sweden. Forest Ecology and Management, 309, 58 – 65. https://doi.org/10.1016/j.foreco.2013.01.022
dc.identifier.citedreferenceIversen, C. M., Powell, A. S., McCormack, M. L., Blackwood, C. B., Freschet, G. T., Kattge, J., Roumet, C., Stover, D. B., Soudzilovskaia, N. A., Valverde‐Barrantes, O., van Bodegom, P. M., & Violle, C. ( 2018 ). Fine‐Root Ecology Database (FRED): A global collection of root trait data with coincident site, vegetation, edaphic, and climatic data (version 2) [Computer software]. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy. https://roots.ornl.gov/
dc.identifier.citedreferenceJanse‐Ten Klooster, S. H., Thomas, E. J. P., & Sterck*, F. J. ( 2007 ). Explaining interspecific differences in sapling growth and shade tolerance in temperate forests. Journal of Ecology, 95 ( 6 ), 1250 – 1260. https://doi.org/10.1111/j.1365‐2745.2007.01299.x
dc.identifier.citedreferenceKleyer, M., & Minden, V. ( 2015 ). Why functional ecology should consider all plant organs: An allocation‐based perspective. Basic and Applied Ecology, 16 ( 1 ), 1 – 9. https://doi.org/10.1016/j.baae.2014.11.002
dc.identifier.citedreferenceKong, D., Wang, J., Zeng, H., Liu, M., Miao, Y., Wu, H., & Kardol, P. ( 2017 ). The nutrient absorption–transportation hypothesis: Optimizing structural traits in absorptive roots. New Phytologist, 213 ( 4 ), 1569 – 1572. https://doi.org/10.1111/nph.14344
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.