Show simple item record

Electrode- Induced Self- Healed Monolayer MoS2 for High Performance Transistors and Phototransistors

dc.contributor.authorPak, Sangyeon
dc.contributor.authorJang, Seunghun
dc.contributor.authorKim, Taehun
dc.contributor.authorLim, Jungmoon
dc.contributor.authorHwang, Jae Seok
dc.contributor.authorCho, Yuljae
dc.contributor.authorChang, Hyunju
dc.contributor.authorJang, A‐rang
dc.contributor.authorPark, Kyung‐Ho
dc.contributor.authorHong, John
dc.contributor.authorCha, SeungNam
dc.date.accessioned2021-11-02T00:45:42Z
dc.date.available2022-11-01 20:45:40en
dc.date.available2021-11-02T00:45:42Z
dc.date.issued2021-10
dc.identifier.citationPak, Sangyeon; Jang, Seunghun; Kim, Taehun; Lim, Jungmoon; Hwang, Jae Seok; Cho, Yuljae; Chang, Hyunju; Jang, A‐rang ; Park, Kyung‐Ho ; Hong, John; Cha, SeungNam (2021). "Electrode- Induced Self- Healed Monolayer MoS2 for High Performance Transistors and Phototransistors." Advanced Materials 33(41): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/170827
dc.description.abstractContact engineering for monolayered transition metal dichalcogenides (TMDCs) is considered to be of fundamental challenge for realizing high- performance TMDCs- based (opto) electronic devices. Here, an innovative concept is established for a device configuration with metallic copper monosulfide (CuS) electrodes that induces sulfur vacancy healing in the monolayer molybdenum disulfide (MoS2) channel. Excess sulfur adatoms from the metallic CuS electrodes are donated to heal sulfur vacancy defects in MoS2 that surprisingly improve the overall performance of its devices. The electrode- induced self- healing mechanism is demonstrated and analyzed systematically using various spectroscopic analyses, density functional theory (DFT) calculations, and electrical measurements. Without any passivation layers, the self- healed MoS2 (photo)transistor with the CuS contact electrodes show outstanding room temperature field effect mobility of 97.6 cm2 (Vs)- 1, On/Off ratio > 108, low subthreshold swing of 120 mV per decade, high photoresponsivity of 1 à 104 A W- 1, and detectivity of 1013 jones, which are the best among back- gated transistors that employ 1L MoS2. Using ultrathin and flexible 2D CuS and MoS2, mechanically flexible photosensor is also demonstrated, which shows excellent durability under mechanical strain. These findings demonstrate a promising strategy in TMDCs or other 2D material for the development of high performance and functional devices including self- healable sulfide electrodes.A novel sulfide electrode system allows sulfur- vacancy self- healing in 2D MoS2. Ultrathin CuS electrode heals defects in the MoS2 channel spontaneously upon mild thermal annealing. The self- healed CuS/MoS2 transistors and phototransistors show impressive device performance.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhigh mobility transistor
dc.subject.otherflexible photodetector
dc.subject.otherultrasensitive photodetection
dc.subject.otherself- healing
dc.subject.otherMoS2
dc.subject.otherlow subthreshold swing
dc.titleElectrode- Induced Self- Healed Monolayer MoS2 for High Performance Transistors and Phototransistors
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170827/1/adma202102091_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170827/2/adma202102091-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170827/3/adma202102091.pdf
dc.identifier.doi10.1002/adma.202102091
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceF. Giannazzo, G. Fisichella, A. Piazza, S. Di Franco, G. Greco, S. Agnello, F. Roccaforte, Phys. Status Solidi RRL 2016, 10, 797.
dc.identifier.citedreferenceS. Pak, J. Lim, J. Hong, S. Cha, Catalysts 2021, 11, 70.
dc.identifier.citedreferenceJ. Hong, B. S. Kim, B. Hou, S. Pak, T. Kim, A. R. Jang, Y. Cho, S. Lee, G. H. An, J. E. Jang, S. M. Morris, J. I. Sohn, S. Cha, ACS Appl. Mater. Interfaces 2021, 13, 4244.
dc.identifier.citedreferenceA. Gurarslan, Y. F. Yu, L. Q. Su, Y. L. Yu, F. Suarez, S. Yao, Y. Zhu, M. Ozturk, Y. Zhang, L. Y. Cao, ACS Nano 2014, 8, 11522.
dc.identifier.citedreferenceS. W. Jung, S. Pak, S. Lee, S. Reimers, S. Mukherjee, P. Dudin, T. K. Kim, M. Cattelan, N. Fox, S. S. Dhesi, C. Cacho, S. Cha, Appl. Surf. Sci. 2020, 532, 147390.
dc.identifier.citedreferenceX. K. Zhang, Q. L. Liao, S. Liu, Z. Kang, Z. Zhang, J. L. Du, F. Li, S. H. Zhang, J. K. Xiao, B. S. Liu, Y. Ou, X. Z. Liu, L. Gu, Y. Zhang, Nat. Commun. 2017, 8, 15881.
dc.identifier.citedreferenceY. Wang, L. Qi, L. Shen, Y. H. Wu, J. Appl. Phys. 2016, 119, 154301.
dc.identifier.citedreferenceH. V. Han, A. Y. Lu, L. S. Lu, J. K. Huang, H. N. Li, C. L. Hsu, Y. C. Lin, M. H. Chiu, K. Suenaga, C. W. Chu, H. C. Kuo, W. H. Chang, L. J. Li, Y. M. Shi, ACS Nano 2016, 10, 1454.
dc.identifier.citedreferenceM. Amani, D.- H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, K. C. Santosh, M. Dubey, K. Cho, R. M. Wallace, S.- C. Lee, J.- H. He, J. W. Ager, X. Zhang, E. Yablonovitch, A. Javey, Science 2015, 350, 1065.
dc.identifier.citedreferenceS. Roy, W. Choi, S. Jeon, D. H. Kim, H. Kim, S. J. Yun, Y. Lee, J. Lee, Y. M. Kim, J. Kim, Nano Lett. 2018, 18, 4523.
dc.identifier.citedreferenceH.- V. Han, A.- Y. Lu, L.- S. Lu, J.- K. Huang, H. Li, C.- L. Hsu, Y.- C. Lin, M.- H. Chiu, K. Suenaga, C.- W. Chu, H.- C. Kuo, W.- H. Chang, L.- J. Li, Y. Shi, ACS Nano 2016, 10, 1454.
dc.identifier.citedreferenceH. Li, C. Tsai, A. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. Han, H. C. Manoharan, F. Abild- Pedersen, J. K. Nørskov, X. Zheng, Nat. Mater. 2015, 15, 48.
dc.identifier.citedreferenceS. Bhattacharjee, K. L. Ganapathi, D. N. Nath, N. Bhat, IEEE Trans. Electron Devices 2016, 63, 2556.
dc.identifier.citedreferenceA. Allain, J. H. Kang, K. Banerjee, A. Kis, Nat. Mater. 2015, 14, 1195.
dc.identifier.citedreferenceS. Choi, Z. Shaolin, W. Yang, J. Korean Phys. Soc. 2014, 64, 1550.
dc.identifier.citedreferenceJ. Peto, T. Ollar, P. Vancso, Z. I. Popov, G. Z. Magda, G. Dobrik, C. Y. Hwang, P. B. Sorokin, L. Tapaszto, Nat. Chem. 2018, 10, 1246.
dc.identifier.citedreferenceL. Qi, Y. Wang, L. Shen, Y. Wu, Appl. Phys. Lett. 2016, 108, 063103.
dc.identifier.citedreferenceW. Zhang, J.- K. Huang, C.- H. Chen, Y.- H. Chang, Y.- J. Cheng, L.- J. Li, Adv. Mater. 2013, 25, 3456.
dc.identifier.citedreferenceD. Kufer, G. Konstantatos, Nano Lett. 2015, 15, 7307.
dc.identifier.citedreferenceB. K. Sarker, E. Cazalas, T. F. Chung, I. Childres, I. Jovanovic, Y. P. Chen, Nat. Nanotechnol. 2017, 12, 668.
dc.identifier.citedreferenceM. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, A. Castellanos- Gomez, Nano Lett. 2014, 14, 3347.
dc.identifier.citedreferenceQ. H. Zhao, W. Wang, F. Carrascoso- Plana, W. Q. Jie, T. Wang, A. Castellanos- Gomez, R. Frisenda, Mater. Horiz. 2020, 7, 252.
dc.identifier.citedreferenceS. Pak, Y. Cho, J. Hong, J. Lee, S. Lee, B. Hou, G. H. An, Y. W. Lee, J. E. Jang, H. Im, S. M. Morris, J. I. Sohn, S. Cha, J. M. Kim, ACS Appl. Mater. Interfaces 2018, 10, 38264.
dc.identifier.citedreferenceY. J. Fang, A. Armin, P. Meredith, J. S. Huang, Nat. Photonics 2019, 13, 1.
dc.identifier.citedreferenceG. Konstantatos, J. Clifford, L. Levina, E. H. Sargent, Nat. Photonics 2007, 1, 531.
dc.identifier.citedreferenceS. Pak, J. Lee, A. R. Jang, S. Kim, K.- H. Park, J. I. Sohn, S. Cha, Adv. Funct. Mater. 2020, 30, 2002023.
dc.identifier.citedreferenceJ. Lee, S. Pak, P. Giraud, Y. W. Lee, Y. Cho, J. Hong, A. R. Jang, H. S. Chung, W. K. Hong, H. Jeong, H. Shin, L. G. Occhipinti, S. M. Morris, S. Cha, J. Sohn, J. Kim, Adv. Mater. 2017, 29, 1702206.
dc.identifier.citedreferenceJ. Lee, S. Pak, Y. W. Lee, Y. Park, A. R. Jang, J. Hong, Y. Cho, B. Hou, S. Lee, H. Y. Jeong, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, J. M. Kim, ACS Nano 2019, 13, 13047.
dc.identifier.citedreferenceG. Kresse, J. Non- Cryst. Solids 1995, 193, 222.
dc.identifier.citedreferenceG. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.
dc.identifier.citedreferenceJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
dc.identifier.citedreferenceJ. Klimes, D. R. Bowler, A. Michaelides, J. Phys.: Condens. Mater. 2010, 22, 022201.
dc.identifier.citedreferenceP. E. Blochl, Phys. Rev. B 1994, 50, 17953.
dc.identifier.citedreferenceJ. Lee, S. Pak, Y.- W. Lee, Y. Cho, J. Hong, P. Giraud, H. S. Shin, S. M. Morris, J. I. Sohn, S. Cha, J. M. Kim, Nat. Commun. 2017, 8, 14734.
dc.identifier.citedreferenceS. Pak, J. Lee, Y.- W. Lee, A.- R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, J. M. Kim, Nano Lett. 2017, 17, 5634.
dc.identifier.citedreferenceS. Pak, A. R. Jang, J. Lee, J. Hong, P. Giraud, S. Lee, Y. Cho, G. H. An, Y. W. Lee, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, J. M. Kim, Nanoscale 2019, 11, 4726.
dc.identifier.citedreferenceJ. Wang, Q. Yao, C. W. Huang, X. Zou, L. Liao, S. Chen, Z. Fan, K. Zhang, W. Wu, X. Xiao, C. Jiang, W. W. Wu, Adv. Mater. 2016, 28, 8302.
dc.identifier.citedreferenceY. Yoon, K. Ganapathi, S. Salahuddin, Nano Lett. 2011, 11, 3768.
dc.identifier.citedreferenceK. Kaasbjerg, K. S. Thygesen, K. W. Jacobsen, Phys. Rev. B 2012, 85, 115317.
dc.identifier.citedreferenceY. Liu, H. Wu, H. C. Cheng, S. Yang, E. B. Zhu, Q. Y. He, M. N. Ding, D. H. Li, J. Guo, N. O. Weiss, Y. Huang, X. F. Duan, Nano Lett. 2015, 15, 3030.
dc.identifier.citedreferenceY. Liu, J. Guo, E. B. Zhu, L. Liao, S. J. Lee, M. N. Ding, I. Shakir, V. Gambin, Y. Huang, X. F. Duan, Nature 2018, 557, 696.
dc.identifier.citedreferenceH. J. Chuang, B. Chamlagain, M. Koehler, M. M. Perera, J. Q. Yan, D. Mandrus, D. Tomanek, Z. X. Zhou, Nano Lett. 2016, 16, 1896.
dc.identifier.citedreferenceY. Wang, J. C. Kim, R. J. Wu, J. Martinez, X. J. Song, J. Yang, F. Zhao, K. A. Mkhoyan, H. Y. Jeong, M. Chhowalla, Nature 2019, 568, 70.
dc.identifier.citedreferenceR. Kappera, D. Voiry, S. Yalcin, B. Branch, G. Gupta, A. Mohite, M. Chhowalla, Nat. Mater. 2014, 13, 1128.
dc.identifier.citedreferenceA. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, J. C. Hone, Nat. Mater. 2013, 12, 554.
dc.identifier.citedreferenceY. J. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, J. Lou, Small 2012, 8, 966.
dc.identifier.citedreferenceW. Park, J. Baik, T. Y. Kim, K. Cho, W. K. Hong, H. J. Shin, T. Lee, ACS Nano 2014, 8, 4961.
dc.identifier.citedreferenceZ. F. Zhang, X. L. Xu, J. Song, Q. G. Gao, S. C. Li, Q. L. Hu, X. F. Li, Y. Q. Wu, Appl. Phys. Lett. 2018, 113, 202103.
dc.identifier.citedreferenceH. Kwon, S. Garg, J. H. Park, Y. Jeong, S. Yu, S. M. Kim, P. Kung, S. Im, NPJ 2D Mater. Appl. 2019, 3, 9.
dc.identifier.citedreferenceT. Y. Kim, M. Amani, G. H. Ahn, Y. Song, A. Javey, S. Chung, T. Lee, ACS Nano 2016, 10, 2819.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.