Show simple item record

Engineered Extracellular Matrices with Integrated Wireless Microactuators to Study Mechanobiology

dc.contributor.authorUslu, Fazil E.
dc.contributor.authorDavidson, Christopher D.
dc.contributor.authorMailand, Erik
dc.contributor.authorBouklas, Nikolaos
dc.contributor.authorBaker, Brendon M.
dc.contributor.authorSakar, Mahmut Selman
dc.date.accessioned2021-11-02T00:45:49Z
dc.date.available2022-11-01 20:45:47en
dc.date.available2021-11-02T00:45:49Z
dc.date.issued2021-10
dc.identifier.citationUslu, Fazil E.; Davidson, Christopher D.; Mailand, Erik; Bouklas, Nikolaos; Baker, Brendon M.; Sakar, Mahmut Selman (2021). "Engineered Extracellular Matrices with Integrated Wireless Microactuators to Study Mechanobiology." Advanced Materials 33(40): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/170830
dc.description.abstractMechanobiology explores how forces regulate cell behaviors and what molecular machinery are responsible for the sensing, transduction, and modulation of mechanical cues. To this end, probing of cells cultured on planar substrates has served as a primary experimental setting for many decades. However, native extracellular matrices (ECMs) consist of fibrous protein assemblies where the physical properties spanning from the individual fiber to the network architecture can influence the transmission of forces to and from the cells. Here, a robotic manipulation platform that allows wireless, localized, and programmable deformation of an engineered fibrous ECM is introduced. A finite‐element‐based digital twin of the fiber network calibrated against measured local and global parameters enables the calculation of deformations and stresses generated by different magnetic actuation schemes across a range of network properties. Physiologically relevant mechanical forces are applied to cells cultured on the fiber network, statically or dynamically, revealing insights into the effects of matrix‐borne forces and deformations as well as force‐mediated matrix remodeling on cell migration and intracellular signaling. These capabilities are not matched by any existing approach, and this versatile platform has the potential to uncover fundamental mechanisms of mechanobiology in settings with greater relevance to living tissues.An in vitro biomimetic platform that provides independent control over geometry, mechanics, and structure over extracellular matrices is introduced. Remote application of forces using robotically controlled magnetic microactuators triggers native mechanobiology responses including intracellular signaling and directed migration. A digital twin complements the platform by reporting stresses generated upon actuation.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfinite‐element modeling
dc.subject.otherextracellular matrix
dc.subject.othermechanobiology
dc.subject.othermicromanipulation
dc.subject.otherrobotics
dc.titleEngineered Extracellular Matrices with Integrated Wireless Microactuators to Study Mechanobiology
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170830/1/adma202102641-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170830/2/adma202102641_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170830/3/adma202102641.pdf
dc.identifier.doi10.1002/adma.202102641
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceL. Yang, K. O. van der Werf, B. F. J. M. Koopman, V. Subramaniam, M. L. Bennink, P. J. Dijkstra, J. Feijen, J. Biomed. Mater. Res., Part A 2007, 82A, 160.
dc.identifier.citedreferenceF. Falleroni, V. Torre, D. Cojoc, Front. Cell Neurosci. 2018, 12, 130.
dc.identifier.citedreferenceW. J. Polacheck, M. L. Kutys, J. Yang, J. Eyckmans, Y. Wu, H. Vasavada, K. K. Hirschi, C. S. Chen, Nature 2017, 552, 258.
dc.identifier.citedreferenceD. Riveline, E. Zamir, N. Q. Balaban, U. S. Schwarz, T. Ishizaki, S. Narumiya, Z. Kam, B. Geiger, A. D. Bershadsky, J. Cell Biol. 2001, 153, 1175.
dc.identifier.citedreferenceG. T. Charras, M. A. Horton, Biophys. J. 2002, 82, 2970.
dc.identifier.citedreferenceG. Bao, S. Suresh, Nat. Mater. 2003, 2, 715.
dc.identifier.citedreferenceA. Wetzler “Bresenham optimized for Matlab”( http://www.mathworks.com/matlabcentral/fileexchange/28190-bresenham-optimized-for-matlab), 2021.
dc.identifier.citedreferenceZ. Liu, Y. Liu, Y. Chang, H. R. Seyf, A. Henry, A. L. Mattheyses, K. Yehl, Y. Zhang, Z. Huang, K. Salaita, Nat. Methods 2016, 13, 143.
dc.identifier.citedreferenceC. M. Bidan, M. Fratzl, A. Coullomb, P. Moreau, A. H. Lombard, I. Wang, M. Balland, T. Boudou, N. M. Dempsey, T. Devillers, A. Dupont, Sci. Rep. 2018, 8, 1464.
dc.identifier.citedreferenceA. Poulin, M. Imboden, F. Sorba, S. Grazioli, C. Martin‐Olmos, S. Rosset, H. Shea, Sci. Rep. 2018, 8, 9895.
dc.identifier.citedreferenceA. Sutton, T. Shirman, J. V. I. Timonen, G. T. England, P. Kim, M. Kolle, T. Ferrante, L. D. Zarzar, E. Strong, J. Aizenberg, Nat. Commun. 2017, 8, 14700.
dc.identifier.citedreferenceY. Chandorkar, A. Castro Nava, S. Schweizerhof, M. Van Dongen, T. Haraszti, J. Köhler, H. Zhang, R. Windoffer, A. Mourran, M. Möller, L. De Laporte, Nat. Commun. 2019, 10, 4027.
dc.identifier.citedreferenceF. Serwane, A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M. Hockenbery, O. Campàs, Nat. Methods 2017, 14, 181.
dc.identifier.citedreferenceA. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, O. Campàs, Nature 2018, 561, 401.
dc.identifier.citedreferenceM. Zhu, H. Tao, M. Samani, M. Luo, X. Wang, S. Hopyan, Y. Sun, Proc. Natl. Acad. Sci. USA 2020, 117, 4781.
dc.identifier.citedreferenceS. Mok, S. Al Habyan, C. Ledoux, W. Lee, K. N. MacDonald, L. McCaffrey, C. Moraes, Nat. Commun. 2020, 11, 4757.
dc.identifier.citedreferenceA. W. Orr, B. P. Helmke, B. R. Blackman, M. A. Schwartz, Dev. Cell 2006, 10, 11.
dc.identifier.citedreferenceP. A. Janmey, R. T. Miller, J. Cell Sci. 2011, 124, 9.
dc.identifier.citedreferenceK. A. Jansen, P. Atherton, C. Ballestrem, Semin. Cell Dev. Biol. 2017, 71, 75.
dc.identifier.citedreferenceB. D. Hoffman, C. Grashoff, M. A. Schwartz, Nature 2011, 475, 316.
dc.identifier.citedreferenceC. C. Dufort, M. J. Paszek, V. M. Weaver, Nat. Rev. Mol. Cell Biol. 2011, 12, 308.
dc.identifier.citedreferenceJ. J. Abbott, O. Ergeneman, M. P. Kummer, A. M. Hirt, B. J. Nelson, IEEE Trans. Rob. 2007, 23, 1247.
dc.identifier.citedreferenceP. P. Provenzano, D. R. Inman, K. W. Eliceiri, S. M. Trier, P. J. Keely, Biophys. J. 2008, 95, 5374.
dc.identifier.citedreferenceP. Friedl, K. Wolf, J. Cell Biol. 2010, 188, 11.
dc.identifier.citedreferenceS. S. Ranade, R. Syeda, A. Patapoutian, Neuron 2015, 87, 1162.
dc.identifier.citedreferenceB. Coste, J. Mathur, M. Schmidt, T. J. Earley, S. Ranade, M. J. Petrus, A. E. Dubin, A. Patapoutian, Science 2010, 330, 55.
dc.identifier.citedreferenceS. A. Gudipaty, J. Lindblom, P. D. Loftus, M. J. Redd, K. Edes, C. F. Davey, V. Krishnegowda, J. Rosenblatt, Nature 2017, 543, 118.
dc.identifier.citedreferenceC. Pardo‐Pastor, F. Rubio‐Moscardo, M. Vogel‐González, S. A. Serra, A. Afthinos, S. Mrkonjic, O. Destaing, J. F. Abenza, J. M. Fernández‐Fernández, X. Trepat, C. Albiges‐Rizo, K. Konstantopoulos, M. A. Valverde, Proc. Natl. Acad. Sci. USA 2018, 115, 1925.
dc.identifier.citedreferenceB. Özkale, R. Parreira, A. Bekdemir, L. Pancaldi, E. Özelçi, C. Amadio, M. Kaynak, F. Stellacci, D. J. Mooney, M. S. Sakar, Lab Chip 2019, 19, 778.
dc.identifier.citedreferenceK. Berkache, S. Deogekar, I. Goda, R. C. Picu, J.‐F. Ganghoffer, Math. Mech. Solids 2019, 24, 3880.
dc.identifier.citedreferenceB. W. Benham‐Pyle, B. L. Pruitt, W. J. Nelson, Science 2015, 348, 1024.
dc.identifier.citedreferenceP. Pakshir, M. Alizadehgiashi, B. Wong, N. M. Coelho, X. Chen, Z. Gong, V. B. Shenoy, C. McCulloch, B. Hinz, Nat. Commun. 2019, 10, 1850.
dc.identifier.citedreferenceB. Fabry, G. N. Maksym, R. D. Hubmayr, J. P. Butler, J. J. Fredberg, J. Magn. Magn. Mater. 1999, 194, 120.
dc.identifier.citedreferenceD. Kluge, F. Abraham, S. Schmidt, H. W. Schmidt, A. Fery, Langmuir 2010, 26, 3020.
dc.identifier.citedreferenceL. Sapir, S. Tzlil, Semin. Cell Dev. Biol. 2017, 71, 99.
dc.identifier.citedreferenceJ. D. Humphrey, E. R. Dufresne, M. A. Schwartz, Nat. Rev. Mol. Cell Biol. 2014, 15, 802.
dc.identifier.citedreferenceF. M. Watt, W. T. S. Huck, Nat. Rev. Mol. Cell Biol. 2013, 14, 467.
dc.identifier.citedreferenceM. W. Pickup, J. K. Mouw, V. M. Weaver, EMBO Rep. 2014, 15, 1243.
dc.identifier.citedreferenceA. D. Doyle, K. M. Yamada, Exp. Cell Res. 2016, 343, 60.
dc.identifier.citedreferenceB. Trappmann, C. S. Chen, Curr. Opin. Biotechnol. 2013, 24, 948.
dc.identifier.citedreferenceO. Chaudhuri, J. Cooper‐White, P. A. Janmey, D. J. Mooney, V. B. Shenoy, Nature 2020, 584, 535.
dc.identifier.citedreferenceZ. Sun, S. S. Guo, R. Fässler, J. Cell Biol. 2016, 215, 445.
dc.identifier.citedreferenceB. M. Baker, C. S. Chen, J. Cell Sci. 2012, 125, 3015.
dc.identifier.citedreferenceF. Spill, D. S. Reynolds, R. D. Kamm, M. H. Zaman, Curr. Opin. Biotechnol. 2016, 40, 41.
dc.identifier.citedreferenceL. Li, J. Eyckmans, C. S. Chen, Nat. Mater. 2017, 16, 1164.
dc.identifier.citedreferenceB. M. Baker, B. Trappmann, W. Y. Wang, M. S. Sakar, I. L. Kim, V. B. Shenoy, J. A. Burdick, C. S. Chen, Nat. Mater. 2015, 14, 1262.
dc.identifier.citedreferenceC. D. Davidson, W. Y. Wang, I. Zaimi, D. K. P. Jayco, B. M. Baker, Sci. Rep. 2019, 9, 12.
dc.identifier.citedreferenceW. Y. Wang, C. D. Davidson, D. Lin, B. M. Baker, Nat. Commun. 2019, 10, 1186.
dc.identifier.citedreferenceS. Kim, M. Uroz, J. L. Bays, C. S. Chen, Dev. Cell 2021, 56, 180.
dc.identifier.citedreferenceM. J. Sanderson, A. C. Charles, E. R. Dirksen, Mol. Biol. Cell 1990, 1, 585.
dc.identifier.citedreferenceK. L. Laugwitz, A. Moretti, J. Lam, P. Gruber, Y. Chen, S. Woodard, L. Z. Lin, C. L. Cai, M. M. Lu, M. Reth, O. Platoshyn, J. X. J. Yuan, S. Evans, K. B. Chien, Nature 2005, 433, 647.
dc.identifier.citedreferenceC. M. Franz, A. Taubenberger, P. H. Puech, D. J. Muller, Sci. STKE 2007, 2007, p15.
dc.identifier.citedreferenceN. Wang, D. E. Ingber, Biochem. Cell Biol. 1995, 73, 327.
dc.identifier.citedreferenceP. Tseng, J. W. Judy, D. Di Carlo, Nat. Methods 2012, 9, 1113.
dc.identifier.citedreferenceX. Shao, Q. Li, A. Mogilner, A. D. Bershadsky, G. V. Shivashankar, Proc. Natl. Acad. Sci. USA 2015, 112, E2595.
dc.identifier.citedreferenceM. Tamada, M. P. Sheetz, Y. Sawada, Dev. Cell 2004, 7, 709.
dc.identifier.citedreferenceS. Jungbauer, H. Gao, J. P. Spatz, R. Kemkemer, Biophys. J. 2008, 95, 3470.
dc.identifier.citedreferenceB. Özkale, M. S. Sakar, D. J. Mooney, Biomaterials 2021, 267, 120497.
dc.identifier.citedreferenceN. J. Sniadecki, A. Anguelouch, M. T. Yang, C. M. Lamb, Z. Liu, S. B. Kirschner, Y. Liu, D. H. Reich, C. S. Chen, Proc. Natl. Acad. Sci. USA 2007, 104, 14553.
dc.identifier.citedreferenceA. Livne, E. Bouchbinder, B. Geiger, Nat. Commun. 2014, 5, 3938.
dc.identifier.citedreferenceY. Cui, F. M. Hameed, B. Yang, K. Lee, C. Q. Pan, S. Park, M. Sheetz, Nat. Commun. 2015, 6, 6333.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.