Show simple item record

Symbiont Photosynthesis and Its Effect on Boron Proxies in Planktic Foraminifera

dc.contributor.authorHönisch, Bärbel
dc.contributor.authorFish, Carina R.
dc.contributor.authorPhelps, Samuel R.
dc.contributor.authorHaynes, Laura L.
dc.contributor.authorDyez, Kelsey
dc.contributor.authorHolland, Kate
dc.contributor.authorFehrenbacher, Jennifer
dc.contributor.authorAllen, Katherine A.
dc.contributor.authorEggins, Stephen M.
dc.contributor.authorGoes, Joaquim I.
dc.date.accessioned2021-11-02T00:45:55Z
dc.date.available2022-11-01 20:45:54en
dc.date.available2021-11-02T00:45:55Z
dc.date.issued2021-10
dc.identifier.citationHönisch, Bärbel ; Fish, Carina R.; Phelps, Samuel R.; Haynes, Laura L.; Dyez, Kelsey; Holland, Kate; Fehrenbacher, Jennifer; Allen, Katherine A.; Eggins, Stephen M.; Goes, Joaquim I. (2021). "Symbiont Photosynthesis and Its Effect on Boron Proxies in Planktic Foraminifera." Paleoceanography and Paleoclimatology 36(10): n/a-n/a.
dc.identifier.issn2572-4517
dc.identifier.issn2572-4525
dc.identifier.urihttps://hdl.handle.net/2027.42/170833
dc.description.abstractBoron proxies in the calcium carbonate shells of planktic foraminifera are sensitive to seawater acidity, but B/Ca ratios and isotopic composition (i.e., δ11B) recorded by different foraminifer species grown under identical environmental conditions differ significantly and systematically. Specifically, Globigerinoides ruber displays higher B/Ca and δ11B than Trilobatus sacculifer and Orbulina universa. It has been hypothesized that these differences are caused by species‐specific rates of symbiont photosynthesis and habitat depth with greater symbiont photosynthesis elevating the microenvironmental pH of G. ruber relative to T. sacculifer and O. universa. Here we test this hypothesis by applying fast repetition rate fluorometry (FRRF), Chlorophyll a quantification, and symbiont counts in laboratory grown specimens of G. ruber (pink), T. sacculifer and O. universa to study species‐specific differences in symbiont photochemical quantum efficiencies. In addition, we report B/Ca shell profiles measured by laser ablation on the same specimens previously monitored by FRRF, and δ11B data of discrete populations of all three species grown under high and low light conditions in the laboratory. While the light experiments document that symbiont photosynthesis elevates pH and/or δ11B in the calcifying microenvironment of all three foraminifer species, the FRRF, Chl. a and symbiont abundance data are relatively uniform among the three species and do not scale consistently with intrashell B/Ca, or with observed species‐specific offsets in B/Ca or δ11B. Implications of these findings for foraminiferal physiology and biomineralization processes are discussed.Key PointsSymbiont photosynthesis raises pH in the microenvironment of planktic foraminiferaForaminifera species‐specific offsets in boron proxies are the same in laboratory culture and in the natural oceanic environmentSymbiont photosynthesis alone does not explain species‐specific boron proxy offsets in planktic foraminifera
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherB/Ca ratios
dc.subject.otherplanktic foraminifera
dc.subject.otherfluorescence
dc.subject.otherboron isotopes
dc.subject.otherphotosynthesis
dc.subject.othervital effects
dc.titleSymbiont Photosynthesis and Its Effect on Boron Proxies in Planktic Foraminifera
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170833/1/palo21091.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170833/2/palo21091_am.pdf
dc.identifier.doi10.1029/2020PA004022
dc.identifier.sourcePaleoceanography and Paleoclimatology
dc.identifier.citedreferencePierrot, D., Lewis, E., & Wallace, D. W. R. ( 2006 ). MS excel program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy.
dc.identifier.citedreferenceKöhler‐Rink, S., & Kühl, M. ( 2005 ). The chemical microenvironment of the symbiotic planktonic foraminifer Orbulina universa. Marine Biology Research, 1, 68 – 78. https://doi.org/10.1080/17451000510019015
dc.identifier.citedreferenceKolber, Z. S., Prášil, O., & Falkowski, P. G. ( 1998 ). Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: Defining methodology and experimental protocols. Biochimica et Biophysica Acta, 1367, 88 – 106. https://doi.org/10.1016/s0005-2728(98)00135-2
dc.identifier.citedreferenceLea, D. W., Martin, P. A., Chan, D. A., & Spero, H. J. ( 1995 ). Calcium uptake and calcification rate in the planktonic foraminifer Orbulina universa. Journal of Foraminiferal Research, 25, 14 – 23. https://doi.org/10.2113/gsjfr.25.1.14
dc.identifier.citedreferenceLee, K., Kim, T.‐W., Byrne, R. H., Millero, F. J., Feely, R. A., & Liu, Y.‐M. ( 2010 ). The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochimica et Cosmochimica Acta, 74, 1801 – 1811. https://doi.org/10.1016/j.gca.2009.12.027
dc.identifier.citedreferenceLombard, F., Erez, J., Michel, E., & Labeyrie, L. ( 2009 ). Temperature effect on respiration and photosynthesis of the symbiont‐bearing planktonic foraminifera Globigerinoides ruber, Orbulina universa, and Globigerinella siphonifera. Limnology & Oceanography, 54, 210 – 218. https://doi.org/10.4319/lo.2009.54.1.0210
dc.identifier.citedreferenceLongerich, H. P., Jackson, S. E., & Günther, D. ( 1996 ). Inter‐laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry, 11, 899 – 904. https://doi.org/10.1039/ja9961100899
dc.identifier.citedreferenceLueker, T. J., Dickson, A. G., & Keeling, C. D. ( 2000 ). Ocean pCO 2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO 2 in gas and seawater at equilibrium. Marine Chemistry, 70, 105 – 119. https://doi.org/10.1016/s0304-4203(00)00022-0
dc.identifier.citedreferenceMartínez‐Botí, M. A., Foster, G. L., Chalk, T. B., Rohling, E. J., Sexton, P. F., Lunt, D. J., et al. ( 2015 ). Plio‐Pleistocene climate sensitivity evaluated using high‐resolution CO 2 records. Nature, 518, 49 – 54. https://doi.org/10.1038/nature14145
dc.identifier.citedreferenceOsborne, E. B., Umling, N. E., Bizimis, M., Buckley, W., Sadekov, A., Tappa, E., et al. ( 2020 ). A sediment trap evaluation of B/Ca as a carbonate system proxy in asymbiotic and nondinoflagellate hosting planktonic foraminifera. Paleoceanography and Paleoclimatology, 35, e2019PA003682. https://doi.org/10.1029/2019pa003682
dc.identifier.citedreferencePaillard, D., Labeyrie, L., & Yiou, P. ( 1996 ). Macintosh program performs time‐series analysis. Eos, Transactions American Geophysical Union, 77, 379 – 379. https://doi.org/10.1029/96eo00259
dc.identifier.citedreferenceRink, S., Kühl, M., Bijma, J., & Spero, H. J. ( 1998 ). Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa. Marine Biology, 131, 583 – 595. https://doi.org/10.1007/s002270050350
dc.identifier.citedreferenceRosenthal, Y., Field, M. P., & Sherrell, R. M. ( 1999 ). Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Analytical Chemistry, 71, 3248 – 3253. https://doi.org/10.1021/ac981410x
dc.identifier.citedreferenceRussell, A. D., Hönisch, B., Spero, H. J., & Lea, D. W. ( 2004 ). Effects of changes in seawater carbonate ion concentration and temperature on shell U/Ca, Mg/Ca, and Sr/Ca of planktonic foraminifera. Geochimca Cosmochimica Acta, 68, 4347 – 4361. https://doi.org/10.1016/j.gca.2004.03.013
dc.identifier.citedreferenceSadekov, A. Y., Eggins, S. M., & De Deckker, P. ( 2005 ). Characterization of Mg/Ca distributions in planktonic foraminifera species by electron microprobe mapping. Geochemistry, Geophysics and Geosystems, 6. https://doi.org/10.1029/2005gc000973
dc.identifier.citedreferenceSanyal, A., Bijma, J., Spero, H. J., & Lea, D. W. ( 2001 ). Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo‐pH proxy. Paleoceanography, 16, 515 – 519. https://doi.org/10.1029/2000pa000547
dc.identifier.citedreferenceSanyal, A., Hemming, N. G., Broecker, W. S., Lea, D. W., Spero, H. J., & Hanson, G. N. ( 1996 ). Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments. Paleoceanography, 11, 513 – 517. https://doi.org/10.1029/96pa01858
dc.identifier.citedreferenceSchiebel, R., & Hemleben, C. ( 2017 ). Planktic foraminifers in the modern ocean ( 2nd ed. ): Springer‐Verlag.
dc.identifier.citedreferenceSeki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., & Pancost, R. D. ( 2010 ). Alkenone and boron‐based Pliocene pCO 2 records. Earth and Planetary Science Letters, 292, 201 – 211. https://doi.org/10.1016/j.epsl.2010.01.037
dc.identifier.citedreferenceShaked, Y., & de Vargas, C. ( 2006 ). Pelagic photosymbiosis: rDNA assessment of diversity and evolution of dinoflagellate symbionts and planktonic foraminiferal hosts. Marine Ecology Progress Series, 325, 59 – 71. https://doi.org/10.3354/meps325059
dc.identifier.citedreferenceSiano, R., Montresor, M., Probert, I., Not, F., & de Vargas, C. ( 2010 ). Pelagodinium gen. nov. and P. béii comb. nov., a dinoflagellate Symbiont of Planktonic Foraminifera. Protist, 161, 385 – 399. https://doi.org/10.1016/j.protis.2010.01.002
dc.identifier.citedreferenceSpero, H. J. ( 1987 ). Symbiosis in the planktonic foraminifer, Orbulina universa, and the isolation of its symbiotic dinoflagellate, Gymnodinium béii sp. nov. Journal of Phycology, 23, 307 – 317. https://doi.org/10.1111/j.1529-8817.1987.tb04139.x
dc.identifier.citedreferenceSpero, H. J., Eggins, S. M., Russell, A. D., Vetter, L., Kilburn, M. R., & Hönisch, B. ( 2015 ). Timing and mechanism for intratest Mg/Ca variability in a living planktic foraminifer. Earth and Planetary Science Letters, 409, 32 – 42. https://doi.org/10.1016/j.epsl.2014.10.030
dc.identifier.citedreferenceSpero, H. J., & Lea, D. W. ( 1993 ). Intraspecific stable isotope variability in the planktic foraminifera Globigerinoides sacculifer: Results from laboratory experiments. Marine Micropaleontology, 22, 221 – 234. https://doi.org/10.1016/0377-8398(93)90045-y
dc.identifier.citedreferenceSpero, H. J., & Parker, S. L. ( 1985 ). Photosynthesis in the symbiotic planktonic foraminifer Orbulina universa, and its potential contribution to oceanic primary productivity. Journal of Foraminiferal Research, 15, 273 – 281. https://doi.org/10.2113/gsjfr.15.4.273
dc.identifier.citedreferenceTakagi, H., Kimoto, K., Fujiki, T., Kurasawa, A., Moriya, K., & Hirano, H. ( 2016 ). Ontogenetic dynamics of photosymbiosis in cultured planktic foraminifers revealed by fast repetition rate fluorometry. Marine Micropaleontology, 122, 44 – 52. https://doi.org/10.1016/j.marmicro.2015.10.003
dc.identifier.citedreferenceTakagi, H., Kimoto, K., Fujiki, T., Saito, H., Schmidt, C., Kucera, M., & Moriya, K. ( 2019 ). Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences, 16, 3377 – 3396. https://doi.org/10.5194/bg-16-3377-2019
dc.identifier.citedreferenceVengosh, A., Kolodny, Y., Starinsky, A., Chivas, A. R., & McCulloch, M. T. ( 1991 ). Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochimica et Cosmochimica Acta, 55, 2901 – 2910. https://doi.org/10.1016/0016-7037(91)90455-e
dc.identifier.citedreferenceVetter, L., Kozdon, R., Mora, C. I., Eggins, S. M., Valley, J. W., Hönisch, B., & Spero, H. J. ( 2013 ). Micron‐scale intrashell oxygen isotope variation in cultured planktic foraminifers. Geochimica et Cosmochimica Acta, 107, 267 – 278. https://doi.org/10.1016/j.gca.2012.12.046
dc.identifier.citedreferenceYu, J., Elderfield, H., & Hönisch, B. ( 2007 ). B/Ca in planktonic foraminifera as a proxy for surface seawater pH. Paleoceanography, 22. https://doi.org/10.1029/2006pa001347
dc.identifier.citedreferenceYu, J., Thornalley, D. J. R., Rae, J. W. B., & McCave, N. I. ( 2013 ). Calibration and application of B/Ca, Cd/Ca, and δ 11 B in Neogloboquadrina pachyderma (sinistral) to constrain CO 2 uptake in the subpolar North Atlantic during the last deglaciation. Paleoceanography. 28 (2).
dc.identifier.citedreferenceZeebe, R. E., Wolf‐Gladrow, D. A., Bijma, J., & Hönisch, B. ( 2003 ). Vital effects in foraminifera do not compromise the use of δ 11 B as a paleo‐pH indicator: Evidence from modeling. Paleoceanography, 18, 1 – 9. https://doi.org/10.1029/2003pa000881
dc.identifier.citedreferenceDyez, K. A., Hönisch, B., & Schmidt, G. A. ( 2018 ). Early pleistocene obliquity‐scale pCO 2 variability at ∼1.5 million years ago. Paleoceanography and Paleoclimatology, 33. https://doi.org/10.1029/2018pa003349
dc.identifier.citedreferenceEggins, S., De Deckker, P., & Marshall, J. ( 2003 ). Mg/Ca variation in planktonic foraminifera tests: Implications for reconstructing palaeo‐seawater temperature and habitat migration. Earth and Planetary Science Letters, 212, 291 – 306. https://doi.org/10.1016/s0012-821x(03)00283-8
dc.identifier.citedreferenceAllen, K. A., & Hönisch, B. ( 2012 ). The planktic foraminiferal B/Ca proxy for seawater carbonate chemistry: A critical evaluation. Earth and Planetary Science Letters, 345–348, 203 – 211. https://doi.org/10.1016/j.epsl.2012.06.012
dc.identifier.citedreferenceAllen, K. A., Hönisch, B., Eggins, S. M., Haynes, L. L., Rosenthal, Y., & Yu, J. ( 2016 ). Trace element proxies for surface ocean conditions: A synthesis of culture calibrations with planktic foraminifera. Geochimica et Cosmochimica Acta, 193, 197 – 221. https://doi.org/10.1016/j.gca.2016.08.015
dc.identifier.citedreferenceAllen, K. A., Hönisch, B., Eggins, S. M., & Rosenthal, Y. ( 2012 ). Environmental controls on B/Ca in calcite tests of the tropical planktic foraminifer species Globigerinoides ruber and Globigerinoides sacculifer. Earth and Planetary Science Letters, 351–352, 270 – 280. https://doi.org/10.1016/j.epsl.2012.07.004
dc.identifier.citedreferenceAllen, K. A., Hönisch, B., Eggins, S. M., Yu, J. M., Spero, H. J., & Elderfield, H. ( 2011 ). Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulina universa. Earth and Planetary Science Letters, 309, 291 – 301. https://doi.org/10.1016/j.epsl.2011.07.010
dc.identifier.citedreferenceAnand, P., Elderfield, H., & Conte, M. H. ( 2003 ). Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18, 15. https://doi.org/10.1029/2002pa000846
dc.identifier.citedreferenceArbuszewski, J., deMenocal, P., Kaplan, A., & Farmer, E. C. ( 2010 ). On the fidelity of shell‐derived δ 18 O seawater estimates. Earth and Planetary Science Letters, 300, 185 – 196. https://doi.org/10.1016/j.epsl.2010.10.035
dc.identifier.citedreferenceBabila, T. L., Rosenthal, Y., & Conte, M. H. ( 2014 ). Evaluation of the biogeochemical controls on B/Ca of Globigerinoides ruber white from the oceanic flux program, Bermuda. Earth and Planetary Science Letters, 404, 67 – 76. https://doi.org/10.1016/j.epsl.2014.05.053
dc.identifier.citedreferenceBé, A. W. H., Anderson, O. R., Faber, W. W., Jr, Caron, D. A., & Be, A. W. H. ( 1983 ). Sequence of morphological and cytoplasmic changes during gametogenesis in the planktonic foraminifer Globigerinoides sacculifer (Brady). Micropaleontology, 29, 310 – 325. https://doi.org/10.2307/1485737
dc.identifier.citedreferenceBé, A. W. H., Spero, H. J., & Anderson, O. R. ( 1982 ). Effects of symbiont elimination and reinfection on the life processes of the planktonic foraminifer Globigerinoides sacculifer. Marine Biology, 70, 73 – 86.
dc.identifier.citedreferenceBentov, S., Brownlee, C., & Erez, J. ( 2009 ). The role of seawater endocytosis in the biomineralization process in calcareous foraminifera. Proceedings of the National Academy of Sciences, 106, 21500 – 21504. https://doi.org/10.1073/pnas.0906636106
dc.identifier.citedreferenceCaron, D. A., Bé, A. W. H., & Anderson, O. R. ( 1981 ). Effects of variations in light intensity on life processes of the planktonic foraminifer Globigerinoides sacculifer in laboratory culture. Journal of the Marine Biological Association of the United Kingdom, 62, 435 – 451.
dc.identifier.citedreferencede Nooijer, L. J., Spero, H. J., Erez, J., Bijma, J., & Reichart, G. J. ( 2014 ). Biomineralization in perforate foraminifera. Earth‐Science Reviews, 135, 48 – 58. https://doi.org/10.1016/j.earscirev.2014.03.013
dc.identifier.citedreferenceDickson, A. G. ( 1990a ). Standard potential of the reaction: AgCl(s) + 1/2H 2 (g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO 4 ‐ in synthetic seawater from 273.15 to 318.15 K. Journal of Chemical Thermodynamics, 22, 113 – 127. https://doi.org/10.1016/0021-9614(90)90074-z
dc.identifier.citedreferenceDickson, A. G. ( 1990b ). Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep‐Sea Research, 37, 755 – 766. https://doi.org/10.1016/0198-0149(90)90004-f
dc.identifier.citedreferenceEggins, S. M., Sadekov, A., & De Deckker, P. ( 2004 ). Modulation and daily banding of Mg/Ca in Orbulina universa tests by symbiont photosynthesis and respiration: A complication for seawater thermometry? Earth and Planetary Science Letters, 225, 411 – 419. https://doi.org/10.1016/j.epsl.2004.06.019
dc.identifier.citedreferenceErez, J. ( 2003 ). The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Reviews in Mineralogy and Geochemistry, 54, 115 – 150. https://doi.org/10.1515/9781501509346-010
dc.identifier.citedreferenceFalkowski, P. G., Koblizek, M., Gorbunov, M., & Kolber, Z. ( 2004 ). Development and application of variable chlorophyll fluorescence techniques in marine ecosystems. In G. C. Pageorigiou, & R. Govindjee (Eds.), Chlorophyll a fluorescence: A signature of photosynthesis (pp. 757 – 778 ). Springer.
dc.identifier.citedreferenceFoster, G. L. ( 2008 ). Seawater pH, pCO 2 and [CO 3 2− ] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth and Planetary Science Letters, 271, 254 – 266. https://doi.org/10.1016/j.epsl.2008.04.015
dc.identifier.citedreferenceFoster, G. L., Hönisch, B., Paris, G., Dwyer, G. S., Rae, J. W. B., Elliott, T., et al. ( 2013 ). Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO 3 by MC‐ICPMS and NTIMS. Chemical Geology, 358, 1 – 14. https://doi.org/10.1016/j.chemgeo.2013.08.027
dc.identifier.citedreferenceFujiki, T., Takagi, H., Kimoto, K., Kurasawa, A., Yuasa, T., & Mino, Y. ( 2014 ). Assessment of algal photosynthesis in planktic foraminifers by fast repetition rate fluorometry. Journal of Plankton Research, 36, 1403 – 1407. https://doi.org/10.1093/plankt/fbu083
dc.identifier.citedreferenceHaynes, L. L., Hönisch, B., Dyez, K. A., Holland, K., Rosenthal, Y., Fish, C. R., et al. ( 2017 ). Calibration of the B/Ca proxy in the planktic foraminifer Orbulina universa to paleocene seawater conditions. Paleoceanography, 32, 580 – 599. https://doi.org/10.1002/2016pa003069
dc.identifier.citedreferenceHaynes, L. L., Hönisch, B., Holland, K., Rosenthal, Y., & Eggins, S. M. ( 2019 ). Evaluating the planktic foraminiferal B/Ca proxy for application to deep time paleoceanography. Earth and Planetary Science Letters, 528, 115824. https://doi.org/10.1016/j.epsl.2019.115824
dc.identifier.citedreferenceHemming, N. G., & Hanson, G. N. ( 1992 ). Boron isotopic composition and concentration in modern marine carbonates. Geochimica et Cosmochimica Acta, 56, 537 – 543. https://doi.org/10.1016/0016-7037(92)90151-8
dc.identifier.citedreferenceHenehan, M. J., Foster, G. L., Bostock, H. C., Greenop, R., Marshall, B. J., & Wilson, P. A. ( 2016 ). A new boron isotope‐pH calibration for Orbulina universa, with implications for understanding and accounting for “vital effects”. Earth and Planetary Science Letters, 454, 282 – 292. https://doi.org/10.1016/j.epsl.2016.09.024
dc.identifier.citedreferenceHenehan, M. J., Rae, J. W. B., Foster, G. L., Erez, J., Prentice, K. C., Kucera, M., et al. ( 2013 ). Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo‐CO 2 reconstruction. Earth and Planetary Science Letters, 364, 111 – 122. https://doi.org/10.1016/j.epsl.2012.12.029
dc.identifier.citedreferenceHolland, K., Eggins, S. M., Hönisch, B., Haynes, L. L., & Branson, O. ( 2017 ). Calcification rate and shell chemistry response of the planktic foraminifer Orbulina universa to changes in microenvironment seawater carbonate chemistry. Earth and Planetary Science Letters, 464, 124 – 134. https://doi.org/10.1016/j.epsl.2017.02.018
dc.identifier.citedreferenceHolm‐Hansen, O., & Riemann, B. ( 1978 ). Chlorophyll a determination: Improvements in methodology. Oikos, 30, 438 – 447. https://doi.org/10.2307/3543338
dc.identifier.citedreferenceHönisch, B., Bijma, J., Russell, A. D., Spero, H. J., Palmer, M. R., Zeebe, R. E., & Eisenhauer, A. ( 2003 ). The influence of symbiont photosynthesis on the boron isotopic composition of foraminifera shells. Marine Micropaleontology, 49, 87 – 96. https://doi.org/10.1016/s0377-8398(03)00030-6
dc.identifier.citedreferenceHönisch, B., Eggins, S. M., Haynes, L. L., Allen, K. A., Holland, K., & Lorbacher, K. ( 2019 ). Boron proxies in Paleoceanography and Paleoclimatology. John Wiley & Sons, Ltd.
dc.identifier.citedreferenceHönisch, B., & Hemming, N. G. ( 2004 ). Ground‐truthing the boron isotope paleo‐pH proxy in planktonic foraminifera shells: Partial dissolution and shell size effects. Paleoceanography, 19. https://doi.org/10.1029/2004PA001026
dc.identifier.citedreferenceHönisch, B., Hemming, N. G., Archer, D., Siddall, M., & McManus, J. F. ( 2009 ). Atmospheric carbon dioxide concentration across the mid‐Pleistocene transition. Science, 324, 1551 – 1554. https://doi.org/10.1126/science.1171477
dc.identifier.citedreferenceJGOFS‐protocols. ( 1996 ). Protocols for the joint global ocean flux study (JGOFS) core measurements.
dc.identifier.citedreferenceJørgensen, B. B., Erez, J., Revsbech, N. P., & Cohen, Y. ( 1985 ). Symbiotic photosynthesis in a planktonic foraminiferan, Globigerinoides sacculifer (Brady), studied with microelectrodes. Limnology & Oceanography, 30, 1253 – 1267.
dc.identifier.citedreferenceKlochko, K., Kaufman, A. J., Yao, W., Byrne, R. H., & Tossell, J. A. ( 2006 ). Experimental measurement of boron isotope fractionation in seawater. Earth and Planetary Science Letters, 248, 261 – 270. https://doi.org/10.1016/j.epsl.2006.05.034
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.