Show simple item record

Patch characteristics and domestic dogs differentially affect carnivore space use in fragmented landscapes in southern Chile

dc.contributor.authorMalhotra, Rumaan
dc.contributor.authorJiménez, Jaime E.
dc.contributor.authorHarris, Nyeema C.
dc.date.accessioned2021-11-02T00:47:38Z
dc.date.available2022-12-01 20:47:37en
dc.date.available2021-11-02T00:47:38Z
dc.date.issued2021-11
dc.identifier.citationMalhotra, Rumaan; Jiménez, Jaime E. ; Harris, Nyeema C. (2021). "Patch characteristics and domestic dogs differentially affect carnivore space use in fragmented landscapes in southern Chile." Diversity and Distributions (11): 2190-2203.
dc.identifier.issn1366-9516
dc.identifier.issn1472-4642
dc.identifier.urihttps://hdl.handle.net/2027.42/170882
dc.description.abstractAimIn an increasingly anthropogenic world, species face multiple interacting threats. Habitat fragmentation and domestic dogs are two perturbations threatening terrestrial mammals globally. Our aim was to determine whether (a) the spatial use of domestic dogs increases with habitat destruction, and (b) domestic dogs and habitat destruction drive the spatial use of native carnivores in a heavily degraded agricultural landscape.LocationCentral valley/Andean foothills transition of Los Lagos, Chile.MethodsWe implemented a camera trap survey in a fragmented landscape comprised of native forest patches amidst a matrix of pastureland. We used single‐species occupancy models to assess the impact of domestic dogs and habitat destruction on three mesocarnivores—the foxes, culpeo (Lycalopex culpaeus) and chilla (Lycalopex griseus) and the wild cat güiña (Leopardus guigna). Additionally, we compared temporal activity of all study species including domestic dogs.ResultsDetection rates for both the foxes increased with domestic dog occupancy, while factors driving occupancy differed for each of the native species. We found that a 12% projected increase in domestic dog occupancy negatively impacted the spatial use of the culpeo. Habitat loss and fragmentation were positive drivers for chilla and domestic dog occupancy. The güiña did not respond to fragmentation and other habitat covariates or domestic dog occupancy. All native carnivore species were primarily nocturnal, while the domestic dog was almost entirely diurnal.Main ConclusionsWe highlight that domestic dog occupancy was positively correlated with habitat loss. Native species showed varied tolerance to domestic dog occupancy and no negative response to habitat destruction. Future conditions of increased fragmentation and habitat loss will likely increase the potential contact between domestic dogs and native carnivores.ResumenEn un mundo cada vez más antropizado, las especies enfrentan múltiples amenazas que interactúan entre sí. La fragmentación del hábitat y los perros domésticos son dos perturbaciones que amenazan a los mamíferos terrestres a nivel mundial. Nuestro objetivo fue determinar (a) si el uso espacial de los perros domésticos aumenta con la destrucción del hábitat, y (b) si los perros domésticos y la destrucción del hábitat afectan el uso espacial de los carnívoros nativos en un paisaje agrícola altamente degradado.UbicaciónEn el valle central y contrafuertes andinos de la región de Los Lagos, en Chile.MétodosImplementamos un estudio de cámaras trampas en un paisaje fragmentado compuesto por fragmentos de bosque nativo en medio de una matriz de praderas. Usamos modelos de ocupación de una sola especie para evaluar el impacto de los perros domésticos y la destrucción del hábitat sobre tres mesocarnívoros: los zorros culpeo (Lycalopex culpaeus) y chilla (Lycalopex griseus) y el gato güiña (Leopardus guigna). Además, evaluamos la actividad temporal entre todas las especies estudiadas, incluidos los perros domésticos.ResultadosLas tasas de detección para ambos zorros aumentaron con la ocupación de perros domésticos, mientras que los factores que afectaron la ocupación difirieron para cada una de las especies nativas. Encontramos que un aumento proyectado del 12% en la ocupación de perros domésticos afectaría negativamente el uso espacial del culpeo. La pérdida y fragmentación del hábitat fueron determinantes positivos de la ocupación de perros domésticos y de la chilla. La güiña no respondió a la fragmentación, a otras covariables de hábitat, ni a la ocupación de perros domésticos. Todas las especies de carnívoros nativos tuvieron actividades principalmente nocturnas, mientras que el perro doméstico fue casi en su totalidad diurno.Conclusiones PrincipalesDestacamos que la ocupación de perros domésticos se correlacionó positivamente con la pérdida de hábitat. Las especies nativas mostraron una tolerancia variada a la ocupación de perros domésticos y ninguna respuesta negativa a la destrucción del hábitat. Las condiciones futuras de una mayor fragmentación y pérdida de hábitat probablemente aumentarán el contacto potencial entre perros domésticos y carnívoros nativos.
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherinvasive species
dc.subject.otherLycalopex
dc.subject.otherLeopardus
dc.subject.otheroccupancy
dc.subject.otherlandscape
dc.subject.otherCanis lupus familiaris
dc.subject.otherfragmentation
dc.titlePatch characteristics and domestic dogs differentially affect carnivore space use in fragmented landscapes in southern Chile
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170882/1/ddi13391.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170882/2/ddi13391-sup-0002-FigureS1.2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170882/3/ddi13391-sup-0001-FigureS1.1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170882/4/ddi13391_am.pdf
dc.identifier.doi10.1111/ddi.13391
dc.identifier.sourceDiversity and Distributions
dc.identifier.citedreferenceRhodes, C., Atkinson, R., Anderson, R., & Macdonald, D. ( 1998 ). Rabies in Zimbabwe: Reservoir dogs and the implications for disease control. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353, 999 – 1010. https://doi.org/10.1098/rstb.1998.0263
dc.identifier.citedreferenceRidout, M. S., & Linkie, M. ( 2009 ). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14, 322 – 337.
dc.identifier.citedreferenceRielly‐Carroll, E., & Freestone, A. L. ( 2017 ). Habitat fragmentation differentially affects trophic levels and alters behavior in a multi‐trophic marine system. Oecologia, 183, 899 – 908. https://doi.org/10.1007/s00442‐016‐3791‐2
dc.identifier.citedreferenceRocha, D. G., de Barros Ferraz, K. M. P. M., Gonçalves, L., Tan, C. K. W., Lemos, F. G., Ortiz, C., Peres, C. A., Negrões, N., Antunes, A. P., Rohe, F., Abrahams, M., Zapata‐Rios, G., Teles, D., Oliveira, T., von Mühlen, E. M., Venticinque, E., Gräbin, D. M., Mosquera, B. D., Blake, J., … Sollmann, R. ( 2020 ). Wild dogs at stake: Deforestation threatens the only Amazon endemic canid, the short‐eared dog ( Atelocynus microtis ). Royal Society Open Science, 7, 190717.
dc.identifier.citedreferenceRyall, K. L., & Fahrig, L. ( 2006 ). Response of predators to loss and fragmentation of prey habitat: A review of theory. Ecology, 87, 1086 – 1093.
dc.identifier.citedreferenceSantos, F., Carbone, C., Wearn, O. R., Rowcliffe, J. M., Espinosa, S., Lima, M. G. M., Ahumada, J. A., Gonçalves, A. L. S., Trevelin, L. C., Alvarez‐Loayza, P., Spironello, W. R., Jansen, P. A., Juen, L., & Peres, C. A. ( 2019 ). Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. PLoS One, 14, e0213671. https://doi.org/10.1371/journal.pone.0213671
dc.identifier.citedreferenceSchipper, J., Chanson, J. S., Chiozza, F., Cox, N. A., Hoffmann, M., Katariya, V., Lamoreux, J., Rodrigues, A. S. L., Stuart, S. N., Temple, H. J., Baillie, J., Boitani, L., Lacher, T. E., Mittermeier, R. A., Smith, A. T., Absolon, D., Aguiar, J. M., Amori, G., Bakkour, N., … Young, B. E. ( 2008 ). The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science, 322, 225 – 230. https://doi.org/10.1126/science.1165115
dc.identifier.citedreferenceSchuette, P., Wagner, A. P., Wagner, M. E., & Creel, S. ( 2013 ). Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures. Biological Conservation, 158, 301 – 312. https://doi.org/10.1016/j.biocon.2012.08.008
dc.identifier.citedreferenceShores, C. R., Dellinger, J. A., Newkirk, E. S., Kachel, S. M., & Wirsing, A. J. ( 2019 ). Mesopredators change temporal activity in response to a recolonizing apex predator. Behavioral Ecology, 30, 1324 – 1335. https://doi.org/10.1093/beheco/arz080
dc.identifier.citedreferenceSillero‐Zubiri, C., Hoffmann, M., & Macdonald, D. W. ( 2004 ). Canids: Foxes, wolves, jackals, and dogs: Status survey and conservation action plan. IUCN.
dc.identifier.citedreferenceSilva‐Rodríguez, E., Farias, A., Moreira‐Arce, D., Cabello, J., Hidalgo‐Hermoso, E., Lucherini, M., & Jiménez, J. ( 2016 ). Lycalopex fulvipes. The IUCN Red List of Threatened Species, 2016, e.T41586A85370871.
dc.identifier.citedreferenceSilva‐Rodríguez, E. A., Ortega‐Solís, G. R., & Jiménez, J. E. ( 2010 ). Conservation and ecological implications of the use of space by chilla foxes and free‐ranging dogs in a human‐dominated landscape in southern Chile: Interference of chilla foxes by dogs in Chile. Austral Ecology, 35, 765 – 777. https://doi.org/10.1111/j.1442‐9993.2009.02083.x
dc.identifier.citedreferenceSilva‐Rodríguez, E. A., & Sieving, K. E. ( 2012 ). Domestic dogs shape the landscape‐scale distribution of a threatened forest ungulate. Biological Conservation, 150, 103 – 110. https://doi.org/10.1016/j.biocon.2012.03.008
dc.identifier.citedreferenceSilva‐Rodríguez, E. A., Verdugo, C., Aleuy, O. A., Sanderson, J. G., Ortega‐Solís, G. R., Osorio‐Zúñiga, F., & González‐Acuña, D. ( 2010 ). Evaluating mortality sources for the Vulnerable pudu Pudu puda in Chile: Implications for the conservation of a threatened deer. Oryx, 44, 97 – 103. https://doi.org/10.1017/S0030605309990445
dc.identifier.citedreferenceSmith, J. A., Duane, T. P., & Wilmers, C. C. ( 2019 ). Moving through the matrix: Promoting permeability for large carnivores in a human‐dominated landscape. Landscape and Urban Planning, 183, 50 – 58. https://doi.org/10.1016/j.landurbplan.2018.11.003
dc.identifier.citedreferenceSmith‐Ramírez, C. ( 2004 ). The Chilean coastal range: A vanishing center of biodiversity and endemism in South American temperate rainforests. Biodiversity and Conservation, 13, 373 – 393. https://doi.org/10.1023/B:BIOC.0000006505.67560.9f
dc.identifier.citedreferenceSmith‐Ramirez, C., Celis‐Diez, J. L., von Jenstchyk, E., Jimenez, J. E., Armesto, J. J., Smith‐Ramirez, C., Celis‐Diez, J. L., von Jenstchyk, E., Jimenez, J. E., & Armesto, J. J. ( 2010 ). Habitat use of remnant forest habitats by the threatened arboreal marsupial Dromiciops gliroides (Microbiotheria) in a rural landscape of southern Chile. Wildlife Research, 37, 249 – 254. https://doi.org/10.1071/WR09050
dc.identifier.citedreferenceSwift, T. L., & Hannon, S. J. ( 2010 ). Critical thresholds associated with habitat loss: A review of the concepts, evidence, and applications. Biological Reviews, 85, 35 – 53. https://doi.org/10.1111/j.1469‐185X.2009.00093.x
dc.identifier.citedreferenceTorres, P. C., & Prado, P. I. ( 2010 ). Domestic dogs in a fragmented landscape in the Brazilian Atlantic Forest: Abundance, habitat use and caring by owners. Brazilian Journal of Biology, 70, 987 – 994. https://doi.org/10.1590/S1519‐69842010000500010
dc.identifier.citedreferenceUribe, S. V., Estades, C. F., & Radeloff, V. C. ( 2020 ). Pine plantations and five decades of land use change in central Chile. PLoS One, 15, e0230193. https://doi.org/10.1371/journal.pone.0230193
dc.identifier.citedreferenceVanak, A. T., & Gompper, M. E. ( 2010 ). Interference competition at the landscape level: The effect of free‐ranging dogs on a native mesocarnivore. Journal of Applied Ecology, 47, 1225 – 1232. https://doi.org/10.1111/j.1365‐2664.2010.01870.x
dc.identifier.citedreferenceVanak, A. T., Thaker, M., & Gompper, M. E. ( 2009 ). Experimental examination of behavioural interactions between free‐ranging wild and domestic canids. Behavioral Ecology and Sociobiology, 64, 279 – 287. https://doi.org/10.1007/s00265‐009‐0845‐z
dc.identifier.citedreferenceWald, D. M., Jacobson, S. K., & Levy, J. K. ( 2013 ). Outdoor cats: Identifying differences between stakeholder beliefs, perceived impacts, risk and management. Biological Conservation, 167, 414 – 424. https://doi.org/10.1016/j.biocon.2013.07.034
dc.identifier.citedreferenceWintle, B. A., Kujala, H., Whitehead, A., Cameron, A., Veloz, S., Kukkala, A., Moilanen, A., Gordon, A., Lentini, P. E., Cadenhead, N. C. R., & Bekessy, S. A. ( 2019 ). Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 116, 909 – 914. https://doi.org/10.1073/pnas.1813051115
dc.identifier.citedreferenceYoung, J. K., Olson, K. A., Reading, R. P., Amgalanbaatar, S., & Berger, J. ( 2011 ). Is wildlife going to the dogs? Impacts of feral and free‐roaming dogs on wildlife populations. BioScience, 61, 125 – 132. https://doi.org/10.1525/bio.2011.61.2.7
dc.identifier.citedreferenceZapata‐Ríos, G., & Branch, L. C. ( 2018 ). Mammalian carnivore occupancy is inversely related to presence of domestic dogs in the high Andes of Ecuador. PLoS One, 13, e0192346. https://doi.org/10.1371/journal.pone.0192346
dc.identifier.citedreferenceAgostinelli, C., & Lund, U. ( 2017 ). R package ’circular’: Circular Statistics (version 0.4‐93). Retrieved from https://r‐forge.r‐project.org/projects/circular/
dc.identifier.citedreferenceBartlett, L. J., Newbold, T., Purves, D. W., Tittensor, D. P., & Harfoot, M. B. J. ( 2016 ). Synergistic impacts of habitat loss and fragmentation on model ecosystems. Proceedings of the Royal Society B: Biological Sciences, 283, 20161027. https://doi.org/10.1098/rspb.2016.1027
dc.identifier.citedreferenceBennett, A. F., & Saunders, D. A. ( 2010 ). Habitat fragmentation and landscape change. Conservation Biology for All, 93, 1544 – 1550.
dc.identifier.citedreferenceBroadbent, E. N., Asner, G. P., Keller, M., Knapp, D. E., Oliveira, P. J. C., & Silva, J. N. ( 2008 ). Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biological Conservation, 141, 1745 – 1757. https://doi.org/10.1016/j.biocon.2008.04.024
dc.identifier.citedreferenceBroadley, K., Burton, A. C., Avgar, T., & Boutin, S. ( 2019 ). Density‐dependent space use affects interpretation of camera trap detection rates. Ecology and Evolution, 9, 14031 – 14041. https://doi.org/10.1002/ece3.5840
dc.identifier.citedreferenceBroekhuis, F., Cozzi, G., Valeix, M., McNutt, J. W., & Macdonald, D. W. ( 2013 ). Risk avoidance in sympatric large carnivores: Reactive or predictive? Journal of Animal Ecology, 82, 1098 – 1105. https://doi.org/10.1111/1365‐2656.12077
dc.identifier.citedreferenceClimate‐Data.org. (n.d.). Osorno climate: Average Temperature, weather by month, Osorno weather averages. Retrieved from https://en.climate‐data.org/south‐america/chile/x‐region‐de‐los‐lagos/osorno‐2047/
dc.identifier.citedreferenceCochrane, M. A. ( 2001 ). Synergistic interactions between habitat fragmentation and fire in evergreen tropical forests. Conservation Biology, 15, 1515 – 1521. https://doi.org/10.1046/j.1523‐1739.2001.01091.x
dc.identifier.citedreferenceCrooks, K. R. ( 2002 ). Relative sensitivities of mammalian carnivores to habitat fragmentation. Conservation Biology, 16, 488 – 502. https://doi.org/10.1046/j.1523‐1739.2002.00386.x
dc.identifier.citedreferenceCrooks, K. R., Burdett, C. L., Theobald, D. M., King, S. R. B., Di Marco, M., Rondinini, C., & Boitani, L. ( 2017 ). Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proceedings of the National Academy of Sciences of the United States of America, 114, 7635 – 7640. https://doi.org/10.1073/pnas.1705769114
dc.identifier.citedreferenceDoherty, T. S., Dickman, C. R., Glen, A. S., Newsome, T. M., Nimmo, D. G., Ritchie, E. G., Vanak, A. T., & Wirsing, A. J. ( 2017 ). The global impacts of domestic dogs on threatened vertebrates. Biological Conservation, 210, 56 – 59. https://doi.org/10.1016/j.biocon.2017.04.007
dc.identifier.citedreferenceDonadio, E., & Buskirk, S. W. ( 2006 ). Diet, morphology, and interspecific killing in Carnivora. The American Naturalist, 167, 524 – 536. https://doi.org/10.1086/501033
dc.identifier.citedreferenceEcheverria, C., Coomes, D. A., Hall, M., & Newton, A. C. ( 2008 ). Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile. Ecological Modelling, 212, 439 – 449. https://doi.org/10.1016/j.ecolmodel.2007.10.045
dc.identifier.citedreferenceEcheverria, C., Coomes, D., Salas, J., Rey‐Benayas, J. M., Lara, A., & Newton, A. ( 2006 ). Rapid deforestation and fragmentation of Chilean Temperate Forests. Biological Conservation, 130, 481 – 494. https://doi.org/10.1016/j.biocon.2006.01.017
dc.identifier.citedreferenceEcheverría, C., Newton, A. C., Lara, A., Benayas, J. M. R., & Coomes, D. A. ( 2007 ). Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Global Ecology and Biogeography, 16, 426 – 439. https://doi.org/10.1111/j.1466‐8238.2007.00311.x
dc.identifier.citedreferenceEcheverría, C., Newton, A., Nahuelhual, L., Coomes, D., & Rey‐Benayas, J. M. ( 2012 ). How landscapes change: Integration of spatial patterns and human processes in temperate landscapes of southern Chile. Applied Geography, 32, 822 – 831. https://doi.org/10.1016/j.apgeog.2011.08.014
dc.identifier.citedreferenceFahrig, L. ( 2013 ). Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40, 1649 – 1663. https://doi.org/10.1111/jbi.12130
dc.identifier.citedreferenceFahrig, L., Arroyo‐Rodríguez, V., Bennett, J. R., Boucher‐Lalonde, V., Cazetta, E., Currie, D. J., Eigenbrod, F., Ford, A. T., Harrison, S. P., Jaeger, J. A. G., Koper, N., Martin, A. E., Martin, J.‐L., Metzger, J. P., Morrison, P., Rhodes, J. R., Saunders, D. A., Simberloff, D., Smith, A. C., … Watling, J. I. ( 2019 ). Is habitat fragmentation bad for biodiversity? Biological Conservation, 230, 179 – 186. https://doi.org/10.1016/j.biocon.2018.12.026
dc.identifier.citedreferenceFarris, Z. J., Gerber, B. D., Karpanty, S., Murphy, A., Wampole, E., Ratelolahy, F., & Kelly, M. J. ( 2020 ). Exploring and interpreting spatiotemporal interactions between native and invasive carnivores across a gradient of rainforest degradation. Biological Invasions, 22, 2033 – 2047. https://doi.org/10.1007/s10530‐020‐02237‐1
dc.identifier.citedreferenceFarris, Z. J., Gerber, B. D., Valenta, K., Rafaliarison, R., Razafimahaimodison, J. C., Larney, E., Rajaonarivelo, T., Randriana, Z., Wright, P. C., & Chapman, C. A. ( 2017 ). Threats to a rainforest carnivore community: A multi‐year assessment of occupancy and co‐occurrence in Madagascar. Biological Conservation, 210, 116 – 124. https://doi.org/10.1016/j.biocon.2017.04.010
dc.identifier.citedreferenceFarris, Z. J., Kelly, M. J., Karpanty, S., & Ratelolahy, F. ( 2016 ). Patterns of spatial co‐occurrence among native and exotic carnivores in north‐eastern Madagascar. Animal Conservation, 19, 189 – 198. https://doi.org/10.1111/acv.12233
dc.identifier.citedreferenceFiske, I., & Chandler, R. ( 2011 ). Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software, 43, 1 – 23.
dc.identifier.citedreferenceFletcher, R. J., Didham, R. K., Banks‐Leite, C., Barlow, J., Ewers, R. M., Rosindell, J., Holt, R. D., Gonzalez, A., Pardini, R., Damschen, E. I., Melo, F. P. L., Ries, L., Prevedello, J. A., Tscharntke, T., Laurance, W. F., Lovejoy, T., & Haddad, N. M. ( 2018 ). Is habitat fragmentation good for biodiversity? Biological Conservation, 226, 9 – 15. https://doi.org/10.1016/j.biocon.2018.07.022
dc.identifier.citedreferenceFord‐Thompson, A. E. S., Snell, C., Saunders, G., & White, P. C. L. ( 2012 ). Stakeholder participation in management of invasive vertebrates. Conservation Biology, 26, 345 – 356. https://doi.org/10.1111/j.1523‐1739.2011.01819.x
dc.identifier.citedreferenceGerber, B. D., Karpanty, S. M., & Randrianantenaina, J. ( 2012 ). Activity patterns of carnivores in the rain forests of Madagascar: Implications for species coexistence. Journal of Mammalogy, 93, 667 – 676. https://doi.org/10.1644/11‐MAMM‐A‐265.1
dc.identifier.citedreferenceGompper, M. E. ( 2013 ). Free‐ranging dogs and wildlife conservation. Oxford University Press.
dc.identifier.citedreferenceGramza, A., Teel, T., VandeWoude, S., & Crooks, K. ( 2016 ). Understanding public perceptions of risk regarding outdoor pet cats to inform conservation action. Conservation Biology, 30, 276 – 286. https://doi.org/10.1111/cobi.12631
dc.identifier.citedreferenceHaddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., … Townshend, J. R. ( 2015 ). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052. https://doi.org/10.1126/sciadv.1500052
dc.identifier.citedreferenceHalley, J. M., Monokrousos, N., Mazaris, A. D., Newmark, W. D., & Vokou, D. ( 2016 ). Dynamics of extinction debt across five taxonomic groups. Nature Communications, 7, 12283. https://doi.org/10.1038/ncomms12283
dc.identifier.citedreferenceHanski, I., & Ovaskainen, O. ( 2002 ). Extinction debt at extinction threshold. Conservation Biology, 16, 666 – 673. https://doi.org/10.1046/j.1523‐1739.2002.00342.x
dc.identifier.citedreferenceHarrison, M. L. K., & Banks‐Leite, C. ( 2020 ). Edge effects on trophic cascades in tropical rainforests. Conservation Biology, 34, 977 – 987. https://doi.org/10.1111/cobi.13438
dc.identifier.citedreferenceHughes, J., & Macdonald, D. W. ( 2013 ). A review of the interactions between free‐roaming domestic dogs and wildlife. Biological Conservation, 157, 341 – 351. https://doi.org/10.1016/j.biocon.2012.07.005
dc.identifier.citedreferenceJanecka, J. E., Tewes, M. E., Davis, I. A., Haines, A. M., Caso, A., Blankenship, T. L., & Honeycutt, R. L. ( 2016 ). Genetic differences in the response to landscape fragmentation by a habitat generalist, the bobcat, and a habitat specialist, the ocelot. Conservation Genetics, 17, 1093 – 1108. https://doi.org/10.1007/s10592‐016‐0846‐1
dc.identifier.citedreferenceJessen, T., Wang, Y., & Wilmers, C. C. ( 2018 ). Habitat fragmentation provides a competitive advantage to an invasive tree squirrel, Sciurus carolinensis. Biological Invasions, 20, 607 – 618. https://doi.org/10.1007/s10530‐017‐1560‐8
dc.identifier.citedreferenceKamal, S., Grodzińska‐Jurczak, M., & Brown, G. ( 2015 ). Conservation on private land: A review of global strategies with a proposed classification system. Journal of Environmental Planning and Management, 58, 576 – 597. https://doi.org/10.1080/09640568.2013.875463
dc.identifier.citedreferenceKarl, J. W., McCord, S. E., & Hadley, B. C. ( 2017 ). A comparison of cover calculation techniques for relating point‐intercept vegetation sampling to remote sensing imagery. Ecological Indicators, 73, 156 – 165. https://doi.org/10.1016/j.ecolind.2016.09.034
dc.identifier.citedreferenceKremen, C., & Merenlender, A. M. ( 2018 ). Landscapes that work for biodiversity and people. Science, 362, eaau6020. https://doi.org/10.1126/science.aau6020
dc.identifier.citedreferenceKronfeld‐Schor, N., & Dayan, T. ( 2003 ). Partitioning of time as an ecological resource. Annual Review of Ecology, Evolution, and Systematics, 34, 153 – 181. https://doi.org/10.1146/annurev.ecolsys.34.011802.132435
dc.identifier.citedreferenceLaurenson, K., Sillero‐Zubiri, C., Thompson, H., Shiferaw, F., Thirgood, S., & Malcolm, J. ( 1998 ). Disease as a threat to endangered species: Ethiopian wolves, domestic dogs and canine pathogens. Animal Conservation, 1, 273 – 280. https://doi.org/10.1111/j.1469‐1795.1998.tb00038.x
dc.identifier.citedreferenceLindenmayer, D. ( 2019 ). Small patches make critical contributions to biodiversity conservation. Proceedings of the National Academy of Sciences of the United States America, 116, 717 – 719. https://doi.org/10.1073/pnas.1820169116
dc.identifier.citedreferenceLoss, S. R., Will, T., & Marra, P. P. ( 2013 ). The impact of free‐ranging domestic cats on wildlife of the United States. Nature Communications, 4, 1396.
dc.identifier.citedreferenceLoyd, K. A., & Miller, C. A. ( 2010 ). Factors related to preferences for trap‐neuter–release management of feral cats among Illinois homeowners. The Journal of Wildlife Management, 74, 160 – 165. https://doi.org/10.2193/2008‐488
dc.identifier.citedreferenceMacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., & Franklin, A. B. ( 2003 ). Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology, 84, 2200 – 2207. https://doi.org/10.1890/02‐3090
dc.identifier.citedreferenceMacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., & Hines, J. E. ( 2017 ). Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Amsterdam: Elsevier.
dc.identifier.citedreferenceMassara, R. L., Paschoal, A. M. O., Bailey, L. L., Doherty, P. F., & Chiarello, A. G. ( 2016 ). Ecological interactions between ocelots and sympatric mesocarnivores in protected areas of the Atlantic Forest, southeastern Brazil. Journal of Mammalogy, 97, 1634 – 1644. https://doi.org/10.1093/jmammal/gyw129
dc.identifier.citedreferenceMichel, V. T., Jiménez‐Franco, M. V., Naef‐Daenzer, B., & Grüebler, M. U. ( 2016 ). Intraguild predator drives forest edge avoidance of a mesopredator. Ecosphere, 7, e01229. https://doi.org/10.1002/ecs2.1229
dc.identifier.citedreferenceMontibeller, B., Kmoch, A., Virro, H., Mander, Ü., & Uuemaa, E. ( 2020 ). Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Scientific Reports, 10, 5803. https://doi.org/10.1038/s41598‐020‐62591‐x
dc.identifier.citedreferenceMoreira‐Arce, D., Vergara, P. M., & Boutin, S. ( 2015 ). Diurnal human activity and introduced species affect occurrence of carnivores in a human‐dominated landscape. PLoS One, 10, e0137854. https://doi.org/10.1371/journal.pone.0137854
dc.identifier.citedreferenceMorin, D. J., Lesmeister, D. B., Nielsen, C. K., & Schauber, E. M. ( 2018 ). The truth about cats and dogs: Landscape composition and human occupation mediate the distribution and potential impact of non‐native carnivores. Global Ecology and Conservation, 15, e00413. https://doi.org/10.1016/j.gecco.2018.e00413
dc.identifier.citedreferenceMyers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. ( 2000 ). Biodiversity hotspots for conservation priorities. Nature, 403, 853. https://doi.org/10.1038/35002501
dc.identifier.citedreferenceNahuelhual, L., Carmona, A., Lara, A., Echeverría, C., & González, M. E. ( 2012 ). Land‐cover change to forest plantations: Proximate causes and implications for the landscape in south‐central Chile. Landscape and Urban Planning, 107, 12 – 20. https://doi.org/10.1016/j.landurbplan.2012.04.006
dc.identifier.citedreferenceNaugle, D. E., Allred, B. W., Jones, M. O., Twidwell, D., & Maestas, J. D. ( 2020 ). Coproducing science to inform working lands: The next frontier in nature conservation. BioScience, 70, 90 – 96. https://doi.org/10.1093/biosci/biz144
dc.identifier.citedreferenceNiedballa, J., Sollmann, R., Courtiol, A., & Wilting, A. ( 2016 ). camtrapR: An R package for efficient camera trap data management. Methods in Ecology and Evolution, 7, 1457 – 1462. https://doi.org/10.1111/2041‐210X.12600
dc.identifier.citedreferenceOehler, J. D., & Litvaitis, J. A. ( 1996 ). The role of spatial scale in understanding responses of medium‐sized carnivores to forest fragmentation. Canadian Journal of Zoology, 74, 2070 – 2079. https://doi.org/10.1139/z96‐235
dc.identifier.citedreferencePalmeirim, A. F., Santos‐Filho, M., & Peres, C. A. ( 2020 ). Marked decline in forest‐dependent small mammals following habitat loss and fragmentation in an Amazonian deforestation frontier. PLoS One, 15, e0230209. https://doi.org/10.1371/journal.pone.0230209
dc.identifier.citedreferencePalomares, F., & Caro, T. M. ( 1999 ). Interspecific killing among mammalian carnivores. The American Naturalist, 153, 492 – 508. https://doi.org/10.1086/303189
dc.identifier.citedreferencePaschoal, A. M. O., Massara, R. L., Bailey, L. L., Doherty, P. F., Santos, P. M., Paglia, A. P., Hirsch, A., & Chiarello, A. G. ( 2018 ). Anthropogenic disturbances drive domestic dog use of Atlantic forest protected areas. Tropical Conservation Science, 11, 1940082918789833. https://doi.org/10.1177/1940082918789833
dc.identifier.citedreferencePeres, C. A. ( 2001 ). Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conservation Biology, 15, 1490 – 1505. https://doi.org/10.1046/j.1523‐1739.2001.01089.x
dc.identifier.citedreferencePéron, G., Fleming, C. H., de Paula, R. C., Mitchell, N., Strohbach, M., Leimgruber, P., & Calabrese, J. M. ( 2017 ). Periodic continuous‐time movement models uncover behavioral changes of wild canids along anthropization gradients. Ecological Monographs, 87, 442 – 456. https://doi.org/10.1002/ecm.1260
dc.identifier.citedreferencePfeifer, M., Lefebvre, V., Peres, C. A., Banks‐Leite, C., Wearn, O. R., Marsh, C. J., Butchart, S. H. M., Arroyo‐Rodríguez, V., Barlow, J., Cerezo, A., Cisneros, L., D’Cruze, N., Faria, D., Hadley, A., Harris, S. M., Klingbeil, B. T., Kormann, U., Lens, L., Medina‐Rangel, G. F., … Ewers, R. M. ( 2017 ). Creation of forest edges has a global impact on forest vertebrates. Nature, 551, 187 – 191. https://doi.org/10.1038/nature24457
dc.identifier.citedreferenceQi, J., Holyoak, M., Ning, Y., & Jiang, G. ( 2020 ). Ecological thresholds and large carnivores conservation: Implications for the Amur tiger and leopard in China. Global Ecology and Conservation, 21, e00837. https://doi.org/10.1016/j.gecco.2019.e00837
dc.identifier.citedreferenceRanda, L. A., & Yunger, J. A. ( 2006 ). Carnivore occurrence along an urban‐rural gradient: A landscape‐level analysis. Journal of Mammalogy, 87, 1154 – 1164. https://doi.org/10.1644/05‐MAMM‐A‐224R2.1
dc.identifier.citedreferenceR Development Core Team. ( 2019 ). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
dc.identifier.citedreferenceVanak, A. T., & Gompper, M. E. ( 2009 ). Dogs Canis familiaris as carnivores: Their role and function in intraguild competition. Mammal Review, 39, 265 – 283.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.