Show simple item record

Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe

dc.contributor.authorLin, Wenwen
dc.contributor.authorHe, Jiangang
dc.contributor.authorSu, Xianli
dc.contributor.authorZhang, Xiaomi
dc.contributor.authorXia, Yi
dc.contributor.authorBailey, Trevor P.
dc.contributor.authorStoumpos, Constantinos C.
dc.contributor.authorTan, Ganjian
dc.contributor.authorRettie, Alexander J. E.
dc.contributor.authorChung, Duck Young
dc.contributor.authorDravid, Vinayak P.
dc.contributor.authorUher, Ctirad
dc.contributor.authorWolverton, Chris
dc.contributor.authorKanatzidis, Mercouri G.
dc.date.accessioned2021-11-02T00:48:08Z
dc.date.available2022-12-01 20:48:06en
dc.date.available2021-11-02T00:48:08Z
dc.date.issued2021-11
dc.identifier.citationLin, Wenwen; He, Jiangang; Su, Xianli; Zhang, Xiaomi; Xia, Yi; Bailey, Trevor P.; Stoumpos, Constantinos C.; Tan, Ganjian; Rettie, Alexander J. E.; Chung, Duck Young; Dravid, Vinayak P.; Uher, Ctirad; Wolverton, Chris; Kanatzidis, Mercouri G. (2021). "Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe." Advanced Materials 33(44): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/170893
dc.description.abstractThe entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials.Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting in understanding thermoelectric energy conversion. TlCuSe exhibiting intrinsically ultralow thermal conductivity (0.25 W m–1 K–1), a high power factor (11.6 μW cm–1 K–1), and a high figure of merit ZT (1.9) at 643 K is described.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer Science & Business Media
dc.subject.otherchalcogenides
dc.subject.othernarrow‐gap semiconductors
dc.subject.otherthermal conductivity
dc.subject.otherthermoelectric materials
dc.titleUltralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170893/1/adma202104908-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170893/2/adma202104908.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170893/3/adma202104908_am.pdf
dc.identifier.doi10.1002/adma.202104908
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceW. Li, J. Carrete, N. A. Katcho, N. Mingo, Comput. Phys. Commun. 2014, 185, 1747.
dc.identifier.citedreferenceM. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. Andersen, K. Lefmann, J. Andreasson, C. R. Bahl, B. B. Iversen, Nat. Mater. 2008, 7, 811.
dc.identifier.citedreferenceH. L. Liu, X. Shi, F. F. Xu, L. L. Zhang, W. Q. Zhang, L. D. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder, Nat. Mater. 2012, 11, 422.
dc.identifier.citedreferencea) R. Hanus, M. T. Agne, A. J. Rettie, Z. Chen, G. Tan, D. Y. Chung, M. G. Kanatzidis, Y. Pei, P. W. Voorhees, G. J. Snyder, Adv. Mater. 2019, 31, 1900108; b) W. Li, S. Lin, B. Ge, J. Yang, W. Zhang, Y. Pei, Adv. Sci. 2016, 3, 1600196; c) W. G. Zeier, A. Zevalkink, Z. M. Gibbs, G. Hautier, M. G. Kanatzidis, G. J. Snyder, Angew. Chem., Int. Ed. 2016, 55, 6826.
dc.identifier.citedreferenceM. K. Jana, K. Pal, A. Warankar, P. Mandal, U. V. Waghmare, K. Biswas, J. Am. Chem. Soc. 2017, 139, 4350.
dc.identifier.citedreferenceM. K. Jana, K. Pal, U. V. Waghmare, K. Biswas, Angew. Chem. 2016, 128, 7923.
dc.identifier.citedreferenceH. Xie, S. Hao, J. Bao, T. J. Slade, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, J. Am. Chem. Soc. 2020, 142, 9553.
dc.identifier.citedreferenceR. Hoffmann, Angew. Chem. 1987, 99, 871.
dc.identifier.citedreferenceS.‐H. Wei, A. Zunger, Phys. Rev. B 1997, 55, 13605.
dc.identifier.citedreferenceL.‐D. Zhao, J. He, D. Berardan, Y. Lin, J.‐F. Li, C.‐W. Nan, N. Dragoe, Energy Environ. Sci. 2014, 7, 2900.
dc.identifier.citedreferenceJ. G. He, Y. Xia, S. S. Naghavi, V. Ozolins, C. Wolverton, Nat. Commun. 2019, 10, 719.
dc.identifier.citedreferenceR. Berger, J. Solid State Chem. 1987, 70, 65.
dc.identifier.citedreferenceT. Takabatake, K. Suekuni, T. Nakayama, Rev. Mod. Phys. 2014, 86, 669.
dc.identifier.citedreferencea) S. Pailhès, H. Euchner, V. M. Giordano, R. Debord, A. Assy, S. Gomès, A. Bosak, D. Machon, S. Paschen, M. De Boissieu, Phys. Rev. Lett. 2014, 113, 025506; b) T. Tadano, Y. Gohda, S. Tsuneyuki, Phys. Rev. Lett. 2015, 114, 095501; c) C. Chang, A. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 2006, 97, 085901.
dc.identifier.citedreferencea) P. J. Ying, X. Li, Y. C. Wang, J. Yang, C. G. Fu, W. Q. Zhang, X. B. Zhao, T. J. Zhu, Adv. Funct. Mater. 2017, 27, 1604145; b) E. J. Skoug, D. T. Morelli, Phys. Rev. Lett. 2011, 107, 235901; c) G. Zheng, X. L. Su, H. Y. Xie, Y. J. Shu, T. Liang, X. Y. She, W. Liu, Y. G. Yan, Q. J. Zhang, C. Uher, M. G. Kanatzidis, X. F. Tang, Energy Environ. Sci. 2017, 10, 2638.
dc.identifier.citedreferenceT. Zhu, S. Zhang, S. Yang, X. Zhao, Phys. Status Solidi R 2010, 4, 317.
dc.identifier.citedreferenceY. Xia, V. I. Hegde, K. Pal, X. Hua, D. Gaines, S. Patel, J. He, M. Aykol, C. Wolverton, Phys. Rev. X 2020, 10, 041029.
dc.identifier.citedreferenceD. Spitzer, J. Phys. Chem. Solids 1970, 31, 19.
dc.identifier.citedreferenceE. S. Toberer, A. Zevalkink, G. J. Snyder, J. Mater. Chem. 2011, 21, 15843.
dc.identifier.citedreferenceL. Pauling, J. Am. Chem. Soc. 1929, 51, 1010.
dc.identifier.citedreferencea) S.‐H. Wei, A. Zunger, Phys. Rev. B 1988, 37, 8958; b) Y. Zhang, L. Xi, Y. Wang, J. Zhang, P. Zhang, W. Zhang, Comput. Mater. Sci. 2015, 108, 239.
dc.identifier.citedreferenceP. Qiu, X. Shi, L. Chen, Energy Storage Mater. 2016, 3, 85.
dc.identifier.citedreferencea) Y. Z. Pei, X. Y. Shi, A. LaLonde, H. Wang, L. D. Chen, G. J. Snyder, Nature 2011, 473, 66; b) M. Aykol, S. Kim, V. I. Hegde, S. Kirklin, C. Wolverton, Phys. Rev. Mater. 2019, 3, 025402.
dc.identifier.citedreferencea) N. F. Mott, E. A. Davis, Electronic Processes in Non‐crystalline Materials, Oxford University Press, Oxford 2012 b) M. Cutler, N. F. Mott, Phys. Rev. 1969, 181, 1336.
dc.identifier.citedreferenceJ. de Boor, S. Gupta, H. Kolb, T. Dasgupta, E. Muller, J. Mater. Chem. C 2015, 3, 10467.
dc.identifier.citedreferencea) L. D. Zhao, S. H. Lo, J. Q. He, H. Li, K. Biswas, J. Androulakis, C. I. Wu, T. P. Hogan, D. Y. Chung, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc. 2011, 133, 20476; b) J. Androulakis, S. C. Peter, H. Li, C. D. Malliakas, J. A. Peters, Z. F. Liu, B. W. Wessels, J. H. Song, H. Jin, A. J. Freeman, M. G. Kanatzidis, Adv. Mater. 2011, 23, 4163.
dc.identifier.citedreferencea) G. Kresse, J. Hafner, Phys. Rev. B 1993, 48, 13115; b) G. Kresse, J. Furthmuller, Comput. Mater. Sci 1996, 6, 15.
dc.identifier.citedreferenceP. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
dc.identifier.citedreferenceG. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
dc.identifier.citedreferenceJ. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 2008, 100, 136406.
dc.identifier.citedreferenceJ. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207.
dc.identifier.citedreferenceJ. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2006, 124, 219906.
dc.identifier.citedreferenceA. Togo, I. Tanaka, Scr. Mater. 2015, 108, 1.
dc.identifier.citedreferencea) D. Hooton, London, Edinburgh Dublin Philos. Mag. J. Sci. 1955, 46, 422; b) T. R. Koehler, Phys. Rev. Lett. 1966, 17, 89; c) N. Werthamer, Phys. Rev. B 1970, 1, 572; d) M. Klein, G. Horton, J. Low Temp. Phys. 1972, 9, 151.
dc.identifier.citedreferenceF. Zhou, W. Nielson, Y. Xia, V. Ozoliņš, Phys. Rev. Lett. 2014, 113, 185501.
dc.identifier.citedreferenceT. M. Tritt, Thermal Conductivity: Theory, Properties, and Applications, Springer Science & Business Media, Berlin, Germany 2005.
dc.identifier.citedreferenceD. T. Morelli, V. Jovovic, J. P. Heremans, Phys. Rev. Lett. 2008, 101, 035901.
dc.identifier.citedreferenceR. Hill, Proc. Phys. Soc., London, Sect. A 1952, 65, 349.
dc.identifier.citedreferenceY. B. Luo, Y. Zheng, Z. Z. Luo, S. Q. Hao, C. F. Du, Q. H. Liang, Z. Li, K. A. Khor, K. Hippalgaonkar, J. W. Xu, Q. Y. Yan, C. Wolverton, M. G. Kanatzidis, Adv. Energy Mater. 2018, 8, 1702167.
dc.identifier.citedreferencea) G. Tan, L.‐D. Zhao, M. G. Kanatzidis, Chem. Rev. 2016, 116, 12123; b) T. M. Tritt, M. Subramanian, MRS Bull. 2006, 31, 188; c) G. Chen, M. Dresselhaus, G. Dresselhaus, J.‐P. Fleurial, T. Caillat, Int. Mater. Rev. 2003, 48, 45; d) J. He, T. M. Tritt, Science 2017, 357, 1369.
dc.identifier.citedreferencea) Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder, Nature 2011, 473, 66; b) Y. Pei, H. Wang, G. J. Snyder, Adv. Mater. 2012, 24, 6125.
dc.identifier.citedreferencea) J. P. Heremans, B. Wiendlocha, A. M. Chamoire, Energy Environ. Sci. 2012, 5, 5510; b) G. Mahan, J. Sofo, Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 7436.
dc.identifier.citedreferencea) M. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. Cronin, T. Koga, Phys. Solid State 1999, 41, 679; b) T. Harman, P. Taylor, M. Walsh, B. LaForge, Science 2002, 297, 2229.
dc.identifier.citedreferenceZ. Liu, J. Mao, T.‐H. Liu, G. Chen, Z. Ren, MRS Bull. 2018, 43, 181.
dc.identifier.citedreferenceE. Quarez, K.‐F. Hsu, R. Pcionek, N. Frangis, E. Polychroniadis, M. G. Kanatzidis, J. Am. Chem. Soc. 2005, 127, 9177.
dc.identifier.citedreferenceA. Minnich, M. S. Dresselhaus, Z. Ren, G. Chen, Energy Environ. Sci. 2009, 2, 466.
dc.identifier.citedreferenceK. Biswas, J. Q. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature 2012, 489, 414.
dc.identifier.citedreferenceD. Bilc, S. D. Mahanti, E. Quarez, K. F. Hsu, R. Pcionek, M. G. Kanatzidis, Phys. Rev. Lett. 2004, 93, 146403.
dc.identifier.citedreferencea) L. D. Zhao, S. H. Lo, Y. S. Zhang, H. Sun, G. J. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature 2014, 508, 373; b) C. Zhou, Y. K. Lee, Y. Yu, S. Byun, Z.‐Z. Luo, H. Lee, B. Ge, Y.‐L. Lee, X. Chen, J. Y. Lee, O. Cojocaru‐Mired́in, H. Chang, J. Im, S.‐P. Cho, M. Wuttig, V. P. Dravid, M. G. Kanatzidis, Nat. Mater. 2021, https://doi.org/10.1038/s41563-021-01064-6.
dc.identifier.citedreferenceC. G. Fu, S. Q. Bai, Y. T. Liu, Y. S. Tang, L. D. Chen, X. B. Zhao, T. J. Zhu, Nat. Commun. 2015, 6, 8144.
dc.identifier.citedreferenceA. A. Olvera, N. A. Moroz, P. Sahoo, P. Ren, T. P. Bailey, A. A. Page, C. Uher, P. F. P. Poudeu, Energy Environ. Sci. 2017, 10, 1668.
dc.identifier.citedreferenceX. Shi, J. Yang, J. R. Salvador, M. F. Chi, J. Y. Cho, H. Wang, S. Q. Bai, J. H. Yang, W. Q. Zhang, L. D. Chen, J. Am. Chem. Soc. 2011, 133, 7837.
dc.identifier.citedreferencea) K. F. Hsu, D. Y. Chung, S. Lai, A. Mrotzek, T. Kyratsi, T. Hogan, M. G. Kanatzidis, J. Am. Chem. Soc. 2002, 124, 2410; b) K. Kovnir, E. S. Toberer, Chem. Mater. 2016, 28, 2463.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.