Show simple item record

The role of tazobactam‐based combinations for the management of infections due to extended‐spectrum β‐lactamase‐producing Enterobacterales: Insights from the Society of Infectious Diseases Pharmacists

dc.contributor.authorMonogue, Marguerite L.
dc.contributor.authorHeil, Emily L.
dc.contributor.authorAitken, Samuel L.
dc.contributor.authorPogue, Jason M.
dc.date.accessioned2021-11-02T00:48:33Z
dc.date.available2022-11-01 20:48:32en
dc.date.available2021-11-02T00:48:33Z
dc.date.issued2021-10
dc.identifier.citationMonogue, Marguerite L.; Heil, Emily L.; Aitken, Samuel L.; Pogue, Jason M. (2021). "The role of tazobactam‐based combinations for the management of infections due to extended‐spectrum β‐lactamase‐producing Enterobacterales: Insights from the Society of Infectious Diseases Pharmacists." Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy (10): 864-880.
dc.identifier.issn0277-0008
dc.identifier.issn1875-9114
dc.identifier.urihttps://hdl.handle.net/2027.42/170903
dc.description.abstractExtended‐spectrum β‐lactamase (ESBL)‐producing Enterobacterales are a global threat to public health due to their antimicrobial resistance profile and, consequently, their limited available treatment options. Tazobactam is a sulfone β‐lactamase inhibitor with in vitro inhibitory activity against common ESBLs in Enterobacterales, including CTX‐M. However, the role of tazobactam‐based combinations in treating infections caused by ESBL‐producing Enterobacterales remains unclear. In the United States, two tazobactam‐based combinations are available, piperacillin‐tazobactam and ceftolozane‐tazobactam. We evaluated and compared the roles of tazobactam‐based combinations against ESBL‐producing organisms with emphasis on pharmacokinetic/pharmacodynamic exposures in relation to MIC distributions and established breakpoints, clinical outcomes data specific to infection site, and considerations for downstream effects with these agents regarding antimicrobial resistance development. While limited data with ceftolozane‐tazobactam are encouraging for its potential role in infections due to ESBL‐producing Enterobacterales, further evidence is needed to determine its place in therapy. Conversely, currently available microbiologic, pharmacokinetic, pharmacodynamic, and clinical data do not suggest a role for piperacillin‐tazobactam, and we caution clinicians against its usage for these infections.
dc.publisherWiley Periodicals, Inc.
dc.publisherClinical & Laboratory Standards Institute
dc.subject.otherEnterobacterales
dc.subject.otherextended‐spectrum β‐lactamases
dc.subject.othermicrobiome
dc.subject.otherpharmacodynamics
dc.subject.otherpharmacokinetics
dc.subject.otherpiperacillin
dc.subject.otherceftolozane
dc.subject.othertazobactam
dc.titleThe role of tazobactam‐based combinations for the management of infections due to extended‐spectrum β‐lactamase‐producing Enterobacterales: Insights from the Society of Infectious Diseases Pharmacists
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPharmacy and Pharmacology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170903/1/phar2623.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170903/2/phar2623_am.pdf
dc.identifier.doi10.1002/phar.2623
dc.identifier.sourcePharmacotherapy: The Journal of Human Pharmacology and Drug Therapy
dc.identifier.citedreferenceMuller A, Bhagwat S, Patel M, et al. Development of a population model of tazobactam including high doses. ASM Microbe; 2016.
dc.identifier.citedreferenceKalaria SN, Gopalakrishnan M, Heil EL. A Population pharmacokinetics and pharmacodynamic approach to optimize tazobactam activity in critically ill patients. Antimicrob Agents Chemother. 2020; 64 ( 3 ): e02093‐19. doi: 10.1128/AAC.02093‐19
dc.identifier.citedreferenceKollef MH, Nováček M, Kivistik Ü, et al. Ceftolozane–tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT‐NP): a randomised, controlled, double‐blind, phase 3, non‐inferiority trial. Lancet Infect Dis. 2019; 19 ( 12 ): 1299 ‐ 1311. doi: 10.1016/S1473‐3099(19)30403‐7
dc.identifier.citedreferenceHarris PNA, Tambyah PA, Lye DC, et al. Effect of piperacillin‐tazobactam vs meropenem on 30‐day mortality for patients with E. coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: a randomized clinical trial. JAMA. 2018; 320 ( 10 ): 984 ‐ 994. doi: 10.1001/jama.2018.12163
dc.identifier.citedreferenceBurgess DS, Hall RG, Lewis JS, Jorgensen JH, Patterson JE. Clinical and microbiologic analysis of a hospital’s extended‐spectrum β‐lactamase‐producing isolates over a 2‐year period. Pharmacother J Hum Pharmacol Drug Ther. 2003; 23 ( 10 ): 1232 ‐ 1237. doi: 10.1592/phco.23.12.1232.32706
dc.identifier.citedreferenceBurgess DS, Hall RG. In vitro killing of parenteral beta‐lactams against standard and high inocula of extended‐spectrum beta‐lactamase and non‐ESBL producing Klebsiella pneumoniae. Diagn Microbiol Infect Dis. 2004; 49 ( 1 ): 41 ‐ 46. doi: 10.1016/j.diagmicrobio.2003.11.007
dc.identifier.citedreferenceRodríguez‐Baño J, Navarro MD, Retamar P, Picón E, Pascual Á, Extended‐Spectrum Beta‐Lactamases–Red Española de Investigación en Patología Infecciosa/Grupo de Estudio de Infección Hospitalaria Group. β‐Lactam/β‐lactam inhibitor combinations for the treatment of bacteremia due to extended‐spectrum β‐lactamase‐producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis. 2012; 54 ( 2 ): 167 ‐ 174. doi: 10.1093/cid/cir790
dc.identifier.citedreferenceRetamar P, López‐Cerero L, Muniain MA, Pascual Á, Rodríguez‐Baño J, ESBL‐REIPI/GEIH Group. Impact of the MIC of piperacillin‐tazobactam on the outcome of patients with bacteremia due to extended‐spectrum‐β‐lactamase‐producing Escherichia coli. Antimicrob Agents Chemother. 2013; 57 ( 7 ): 3402 ‐ 3404. doi: 10.1128/AAC.00135‐13
dc.identifier.citedreferenceTamma PD, Han JH, Rock C, et al. Carbapenem therapy is associated with improved survival compared with piperacillin‐tazobactam for patients with extended‐spectrum β‐lactamase bacteremia. Clin Infect Dis. 2015; 60 ( 9 ): 1319 ‐ 1325. doi: 10.1093/cid/civ003
dc.identifier.citedreferenceOfer‐Friedman H, Shefler C, Sharma S, et al. Carbapenems versus piperacillin‐tazobactam for bloodstream infections of nonurinary source caused by extended‐spectrum beta‐lactamase‐producing Enterobacteriaceae. Infect Control Hosp Epidemiol. 2015; 36 ( 8 ): 981 ‐ 985. doi: 10.1017/ice.2015.101
dc.identifier.citedreferenceGutiérrez‐Gutiérrez B, Pérez‐Galera S, Salamanca E, et al. A multinational, preregistered cohort study of β‐lactam/β‐lactamase inhibitor combinations for treatment of bloodstream infections due to extended‐spectrum‐β‐lactamase‐producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016; 60 ( 7 ): 4159 ‐ 4169. doi: 10.1128/AAC.00365‐16
dc.identifier.citedreferenceNg TM, Khong WX, Harris PNA, et al. Empiric piperacillin‐tazobactam versus carbapenems in the treatment of bacteraemia due to extended‐spectrum beta‐lactamase‐producing Enterobacteriaceae. PLoS One. 2016; 11 ( 4 ): e0153696. doi: 10.1371/journal.pone.0153696
dc.identifier.citedreferenceSharara SL, Amoah J, Pana ZD, Simner PJ, Cosgrove SE, Tamma PD. Is piperacillin‐tazobactam effective for the treatment of pyelonephritis caused by extended‐spectrum β‐lactamase‐producing organisms? Clin Infect Dis. 2020; 71 ( 8 ): e331 ‐ e337. doi: 10.1093/cid/ciz1205
dc.identifier.citedreferencePopejoy MW, Paterson DL, Cloutier D, et al. Efficacy of ceftolozane/tazobactam against urinary tract and intra‐abdominal infections caused by ESBL‐producing Escherichia coli and Klebsiella pneumoniae: a pooled analysis of Phase 3 clinical trials. J Antimicrob Chemother. 2017; 72 ( 1 ): 268 ‐ 272. doi: 10.1093/jac/dkw374
dc.identifier.citedreferenceZimmermann P, Curtis N. The effect of antibiotics on the composition of the intestinal microbiota – a systematic review. J Infect. 2019; 79 ( 6 ): 471 ‐ 489. doi: 10.1016/j.jinf.2019.10.008
dc.identifier.citedreferenceBhalodi AA, van Engelen TSR, Virk HS, Wiersinga WJ. Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother. 2019; 74 ( Suppl 1 ): i6 ‐ i15. doi: 10.1093/jac/dky530
dc.identifier.citedreferenceMacDougall C. Beyond susceptible and resistant, part I: treatment of infections due to gram‐negative organisms with inducible β‐lactamases. J Pediatr Pharmacol Ther JPPT. 2011; 16 ( 1 ): 23 ‐ 30.
dc.identifier.citedreferenceLister PD, Wolter DJ, Hanson ND. Antibacterial‐resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009; 22 ( 4 ): 582 ‐ 610. doi: 10.1128/CMR.00040‐09
dc.identifier.citedreferenceLee Y, Choi H, Yum JH, et al. Molecular mechanisms of carbapenem resistance in enterobacter cloacae clinical isolates from Korea and clinical outcome. Ann Clin Lab Sci. 2012; 42 ( 3 ): 281 ‐ 286.
dc.identifier.citedreferenceShropshire WC, Aitken SL, Pifer R, et al. β‐lactamase amplification and porin loss drive progressive β‐lactam resistance in recurrent ESBL Enterobacteriaceae bacteremia. bioRxiv. 2019: 616961. Published online April 23. doi: 10.1101/616961
dc.identifier.citedreferenceAdler M, Anjum M, Andersson DI, Sandegren L. Influence of acquired β‐lactamases on the evolution of spontaneous carbapenem resistance in Escherichia coli. J Antimicrob Chemother. 2013; 68 ( 1 ): 51 ‐ 59. doi: 10.1093/jac/dks368
dc.identifier.citedreferenceTängdén T, Adler M, Cars O, Sandegren L, Löwdin E. Frequent emergence of porin‐deficient subpopulations with reduced carbapenem susceptibility in ESBL‐producing Escherichia coli during exposure to ertapenem in an in vitro pharmacokinetic model. J Antimicrob Chemother. 2013; 68 ( 6 ): 1319 ‐ 1326. doi: 10.1093/jac/dkt044
dc.identifier.citedreferenceTamma PD, Huang Y, Opene BNA, Simner PJ. Determining the optimal carbapenem MIC that distinguishes carbapenemase‐producing and non‐carbapenemase‐producing carbapenem‐resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2016; 60 ( 10 ): 6425 ‐ 6429. doi: 10.1128/AAC.00838‐16
dc.identifier.citedreferenceSatlin MJ, Chavda KD, Baker TM, et al. Colonization with levofloxacin‐resistant extended‐spectrum β‐lactamase‐producing Enterobacteriaceae and risk of bacteremia in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2018; 67 ( 11 ): 1720 ‐ 1728. doi: 10.1093/cid/ciy363
dc.identifier.citedreferencePitout JDD, Nordmann P, Poirel L. Carbapenemase‐producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015; 59 ( 10 ): 5873 ‐ 5884. doi: 10.1128/AAC.01019‐15
dc.identifier.citedreferenceNicolas‐Chanoine M‐H, Bertrand X, Madec J‐Y. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev. 2014; 27 ( 3 ): 543 ‐ 574. doi: 10.1128/CMR.00125‐13
dc.identifier.citedreferenceJMI Laboratories. SENTRY antimicrobial surveillance program. Accessed March 20, 2021. https://sentry‐mvp.jmilabs.com/.
dc.identifier.citedreferencePranita DT, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. AMR guidance. Accessed March 22, 2021. https://www.idsociety.org/practice‐guideline/amr‐guidance/.
dc.identifier.citedreferenceLivermore DM. Determinants of the activity of β‐lactamase inhibitor combinations. J Antimicrob Chemother. 1993; 31 ( suppl_A ): 9 ‐ 21. doi: 10.1093/jac/31.suppl_A.9
dc.identifier.citedreferencePaterson DL, Bonomo RA. Extended‐spectrum β‐lactamases: a clinical update. Clin Microbiol Rev. 2005; 18 ( 4 ): 657 ‐ 686. doi: 10.1128/CMR.18.4.657‐686.2005
dc.identifier.citedreferenceCDC. The biggest antibiotic‐resistant threats in the U.S. Centers for Disease Control and Prevention. Published November 14, 2019. Accessed January 20, 2020. https://www.cdc.gov/drugresistance/biggest‐threats.html.
dc.identifier.citedreferenceBush K, Jacoby GA. Updated functional classification of β‐lactamases. Antimicrob Agents Chemother. 2010; 54 ( 3 ): 969 ‐ 976. doi: 10.1128/AAC.01009‐09
dc.identifier.citedreferenceTzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012; 25 ( 4 ): 682 ‐ 707. doi: 10.1128/CMR.05035‐11
dc.identifier.citedreferenceGuh AY, Bulens SN, Mu YI, et al. Epidemiology of carbapenem‐resistant Enterobacteriaceae in 7 US communities, 2012–2013. JAMA. 2015; 314 ( 14 ): 1479 ‐ 1487. doi: 10.1001/jama.2015.12480
dc.identifier.citedreferenceVan Boeckel TP, Gandra S, Ashok A, et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014; 14 ( 8 ): 742 ‐ 750. doi: 10.1016/S1473‐3099(14)70780‐7
dc.identifier.citedreferenceMendes RE, Castanheira M, Woosley LN, Stone GG, Bradford PA, Flamm RK. Molecular β‐lactamase characterization of Gram‐negative pathogens recovered from patients enrolled in the ceftazidime‐avibactam phase 3 trials (RECAPTURE 1 and 2) for complicated urinary tract infections: efficacies analysed against susceptible and resistant subsets. Int J Antimicrob Agents. 2018; 52 ( 2 ): 287 ‐ 292. doi: 10.1016/j.ijantimicag.2018.04.001
dc.identifier.citedreferenceZhanel GG, Lawson CD, Adam H, et al. Ceftazidime‐avibactam: a novel cephalosporin/β‐lactamase inhibitor combination. Drugs. 2013; 73 ( 2 ): 159 ‐ 177. doi: 10.1007/s40265‐013‐0013‐7
dc.identifier.citedreferenceIsler B, Ezure Y, Romero JLG‐F, Harris P, Stewart AG, Paterson DL. Is ceftazidime/avibactam an option for serious infections due to extended‐spectrum‐β‐lactamase‐ and AmpC‐producing Enterobacterales?: a systematic review and meta‐analysis. Antimicrob Agents Chemother. 2020; 65 ( 1 ): e01052‐20. doi: 10.1128/AAC.01052‐20
dc.identifier.citedreferenceHaidar G, Clancy CJ, Chen L, et al. Identifying spectra of activity and therapeutic niches for ceftazidime‐avibactam and imipenem‐relebactam against carbapenem‐resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2017; 61 ( 9 ): e00642‐17. doi: 10.1128/AAC.00642‐17
dc.identifier.citedreferencevan Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazobactam: second‐generation β‐lactam/β‐lactamase inhibitor combinations. Clin Infect Dis. 2016; 63 ( 2 ): 234 ‐ 241. doi: 10.1093/cid/ciw243
dc.identifier.citedreferenceSousa A, Pérez‐Rodríguez MT, Soto A, et al. Effectiveness of ceftazidime/avibactam as salvage therapy for treatment of infections due to OXA‐48 carbapenemase‐producing Enterobacteriaceae. J Antimicrob Chemother. 2018; 73 ( 11 ): 3170 ‐ 3175. doi: 10.1093/jac/dky295
dc.identifier.citedreferenceTumbarello M, Trecarichi EM, Corona A, et al. Efficacy of ceftazidime‐avibactam salvage therapy in patients with infections caused by Klebsiella pneumoniae carbapenemase‐producing K. pneumoniae. Clin Infect Dis. 2019; 68 ( 3 ): 355 ‐ 364. doi: 10.1093/cid/ciy492
dc.identifier.citedreferenceJorgensen SCJ, Trinh TD, Zasowski EJ, et al. Real‐world experience with ceftazidime‐avibactam for multidrug‐resistant gram‐negative bacterial infections. Open Forum Infect Dis. 2019; 6 ( 12 ): ofz522. doi: 10.1093/ofid/ofz522
dc.identifier.citedreferenceRossolini GM, D’Andrea MM, Mugnaioli C. The spread of CTX‐M‐type extended‐spectrum β‐lactamases. Clin Microbiol Infect. 2008; 14: 33 ‐ 41. doi: 10.1111/j.1469‐0691.2007.01867.x
dc.identifier.citedreferenceWalther‐Rasmussen J, Høiby N. Cefotaximases (CTX‐M‐ases), an expanding family of extended‐spectrum beta‐lactamases. Can J Microbiol. 2004; 50 ( 3 ): 137 ‐ 165. doi: 10.1139/w03‐111
dc.identifier.citedreferenceBonnet R. Growing group of extended‐spectrum β‐lactamases: the CTX‐M enzymes. Antimicrob Agents Chemother. 2004; 48 ( 1 ): 1 ‐ 14. doi: 10.1128/AAC.48.1.1‐14.2004
dc.identifier.citedreferenceDrawz SM, Bonomo RA. Three decades of β‐lactamase inhibitors. Clin Microbiol Rev. 2010; 23 ( 1 ): 160 ‐ 201. doi: 10.1128/CMR.00037‐09
dc.identifier.citedreferenceTherrien C, Levesque RC. Molecular basis of antibiotic resistance and β‐lactamase inhibition by mechanism‐based inactivators: perspectives and future directions. FEMS Microbiol Rev. 2000; 24 ( 3 ): 251 ‐ 262. doi: 10.1111/j.1574‐6976.2000.tb00541.x
dc.identifier.citedreferenceBonomo RA, Rudin SA, Shlaes DM. Tazobactam is a potent inactivator of selected inhibitor‐resistant class A beta‐lactamases. FEMS Microbiol Lett. 1997; 148 ( 1 ): 59 ‐ 62. doi: 10.1111/j.1574‐6968.1997.tb10267.x
dc.identifier.citedreferenceSoon RL, Lenhard JR, Bulman ZP, et al. Combinatorial pharmacodynamics of ceftolozane‐tazobactam against genotypically defined β‐lactamase‐producing Escherichia coli: insights into the pharmacokinetics/pharmacodynamics of β‐lactam‐β‐lactamase inhibitor combinations. Antimicrob Agents Chemother. 2016; 60 ( 4 ): 1967 ‐ 1973. doi: 10.1128/AAC.02635‐15
dc.identifier.citedreferencePérez‐Llarena FJ, Vázquez‐Ucha JC, Kerff F, et al. Increased antimicrobial resistance in a novel CMY‐54 AmpC‐type enzyme with a GluLeu217‐218 insertion in the Ω‐Loop. Microb Drug Resist. 2018; 24 ( 5 ): 527 ‐ 533. doi: 10.1089/mdr.2017.0017
dc.identifier.citedreferenceNaumovski L, Quinn JP, Miyashiro D, et al. Outbreak of ceftazidime resistance due to a novel extended‐spectrum beta‐lactamase in isolates from cancer patients. Antimicrob Agents Chemother. 1992; 36 ( 9 ): 1991 ‐ 1996. doi: 10.1128/aac.36.9.1991
dc.identifier.citedreferencePayne DJ, Cramp R, Winstanley DJ, Knowles DJ. Comparative activities of clavulanic acid, sulbactam, and tazobactam against clinically important beta‐lactamases. Antimicrob Agents Chemother. 1994; 38 ( 4 ): 767 ‐ 772. doi: 10.1128/aac.38.4.767
dc.identifier.citedreferenceShen Z, Ding B, Bi Y, et al. CTX‐M‐190, a novel β‐lactamase resistant to tazobactam and sulbactam, identified in an Escherichia coli clinical isolate. Antimicrob Agents Chemother. 2017; 61 ( 1 ): e01848‐16. doi: 10.1128/AAC.01848‐16
dc.identifier.citedreferenceKhan A, Faheem M, Danishuddin M, Khan AU. Evaluation of inhibitory action of novel non β‐lactam inhibitor against Klebsiella pneumoniae Carbapenemase (KPC‐2). PLoS One. 2014; 9 ( 9 ): e108246. doi: 10.1371/journal.pone.0108246
dc.identifier.citedreferenceFaheem M, Rehman MT, Danishuddin M, Khan AU. Biochemical characterization of CTX‐M‐15 from Enterobacter cloacae and designing a novel non‐β‐lactam‐β‐lactamase inhibitor. PLoS One. 2013; 8 ( 2 ): e56926. doi: 10.1371/journal.pone.0056926
dc.identifier.citedreferenceBush K, Macalintal C, Rasmussen BA, Lee VJ, Yang Y. Kinetic interactions of tazobactam with beta‐lactamases from all major structural classes. Antimicrob Agents Chemother. 1993; 37 ( 4 ): 851 ‐ 858. doi: 10.1128/aac.37.4.851
dc.identifier.citedreferenceXiao AJ, Miller BW, Huntington JA, Nicolau DP. Ceftolozane/tazobactam pharmacokinetic/pharmacodynamic‐derived dose justification for phase 3 studies in patients with nosocomial pneumonia. J Clin Pharmacol. 2016; 56 ( 1 ): 56 ‐ 66. doi: 10.1002/jcph.566
dc.identifier.citedreferenceSime FB, Lassig‐Smith M, Starr T, et al. Population pharmacokinetics of unbound ceftolozane and tazobactam in critically ill patients without renal dysfunction. Antimicrob Agents Chemother. 2019; 63 ( 10 ): e01265‐19. doi: 10.1128/AAC.01265‐19
dc.identifier.citedreferenceM100Ed31 | performance standards for antimicrobial susceptibility testing, 31 st edition. Clinical & Laboratory Standards Institute. Accessed August 12, 2021. https://clsi.org/standards/products/microbiology/documents/m100/.
dc.identifier.citedreferenceEUCAST: clinical breakpoints and dosing of antibiotics. Accessed December 30, 2019. http://www.eucast.org/clinical_breakpoints/.
dc.identifier.citedreferenceHenderson A, Paterson DL, Chatfield MD, et al. Association between minimum inhibitory concentration, beta‐lactamase genes and mortality for patients treated with piperacillin/tazobactam or meropenem from the MERINO study. Clin Infect Dis. 2020: ciaa1479. doi: 10.1093/cid/ciaa1479. PMID: 33106863.
dc.identifier.citedreferenceLivermore DM, Day M, Cleary P, et al. OXA‐1 β‐lactamase and non‐susceptibility to penicillin/β‐lactamase inhibitor combinations among ESBL‐producing Escherichia coli. J Antimicrob Chemother. 2019; 74 ( 2 ): 326 ‐ 333. doi: 10.1093/jac/dky453
dc.identifier.citedreferenceKumar D, Singh AK, Ali MR, Chander Y. Antimicrobial susceptibility profile of extended spectrum β‐lactamase (ESBL) producing Escherichia coli from various clinical samples. Infect Dis. 2014; 7: 1 ‐ 8. doi: 10.4137/IDRT.S13820
dc.identifier.citedreferenceJobayer M, Afroz Z, Nahar SS, Begum A, Begum SA, Shamsuzzaman S. Antimicrobial susceptibility pattern of extended‐spectrum beta‐lactamases producing organisms isolated in a Tertiary Care Hospital, Bangladesh. Int J Appl Basic Med Res. 2017; 7 ( 3 ): 189 ‐ 192. doi: 10.4103/ijabmr.IJABMR_28_16
dc.identifier.citedreferenceAl Mously N, Al Arfaj O, Al Fadhil L, Mukaddam S. Antimicrobial susceptibility patterns of ESBL Escherichia coli isolated from community and hospital‐acquired urinary tract infections. J Health Specialties. 2016; 4 ( 2 ): 133. doi: 10.4103/1658‐600X.179829
dc.identifier.citedreferenceJean S‐S, Coombs G, Ling T, et al. Epidemiology and antimicrobial susceptibility profiles of pathogens causing urinary tract infections in the Asia‐Pacific region: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010–2013. Int J Antimicrob Agents. 2016; 47 ( 4 ): 328 ‐ 334. doi: 10.1016/j.ijantimicag.2016.01.008
dc.identifier.citedreferenceSader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of Gram‐negative organisms isolated from patients hospitalised with pneumonia in US and European hospitals: results from the SENTRY Antimicrobial Surveillance Program, 2009–2012. Int J Antimicrob Agents. 2014; 43 ( 4 ): 328 ‐ 334. doi: 10.1016/j.ijantimicag.2014.01.007
dc.identifier.citedreferenceTitelman E, Karlsson IM, Ge Y, Giske CG. In vitro activity of CXA‐101 plus tazobactam (CXA‐201) against CTX‐M‐14– and CTX‐M‐15–producing Escherichia coli and Klebsiella pneumoniae. Diagn Microbiol Infect Dis. 2011; 70 ( 1 ): 137 ‐ 141. doi: 10.1016/j.diagmicrobio.2011.02.004
dc.identifier.citedreferenceShortridge D, Pfaller MA, Castanheira M, Flamm RK. Antimicrobial activity of ceftolozane‐tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2013–2016) as part of the surveillance program: program to assess ceftolozane‐tazobactam susceptibility. Microb Drug Resist. 2017; 24 ( 5 ): 563 ‐ 577. doi: 10.1089/mdr.2017.0266
dc.identifier.citedreferenceFarrell DJ, Flamm RK, Sader HS, Jones RN. Antimicrobial activity of ceftolozane‐tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2011–2012). Antimicrob Agents Chemother. 2013; 57 ( 12 ): 6305 ‐ 6310. doi: 10.1128/AAC.01802‐13
dc.identifier.citedreferenceSaran O, Sulik‐Tyszka B, Basak GW, Wróblewska MM. Activity of ceftolozane/tazobactam against Gram‐negative rods of the family Enterobacteriaceae and Pseudomonas Spp. isolated from onco‐hematological patients hospitalized in a clinical hospital in Poland. Med Sci Monit Int Med J Exp Clin Res. 2019; 25: 305 ‐ 311. doi: 10.12659/MSM.913352
dc.identifier.citedreferencePazzini C, Ahmad‐Nejad P, Ghebremedhin B. Ceftolozane/tazobactam susceptibility testing in extended‐spectrum betalactamase‐ and carbapenemase‐producing Gram‐negative bacteria of various clonal lineages. Eur J Microbiol Immunol. 2019; 9 ( 1 ): 1 ‐ 4. doi: 10.1556/1886.2019.00001
dc.identifier.citedreferenceSutherland CA, Nicolau DP. Susceptibility profile of ceftolozane/tazobactam and other parenteral antimicrobials against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa from US hospitals. Clin Ther. 2015; 37 ( 7 ): 1564 ‐ 1571. doi: 10.1016/j.clinthera.2015.05.501
dc.identifier.citedreferenceShortridge D, Pfaller MA, Castanheira M, Flamm RK. Antimicrobial activity of ceftolozane‐tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa collected from patients with bloodstream infections isolated in United States hospitals (2013–2015) as part of the Program to Assess Ceftolozane‐Tazobactam Susceptibility (PACTS) surveillance program. Diagn Microbiol Infect Dis. 2018; 92 ( 2 ): 158 ‐ 163. doi: 10.1016/j.diagmicrobio.2018.05.011
dc.identifier.citedreferenceShortridge D, Pfaller MA, Castanheira M, Flamm RK Antimicrobial activity of ceftolozane‐tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2013–2016) as part of the surveillance program: program to assess ceftolozane‐tazobactam susceptibility. Microb Drug Resist Larchmt N. 2018; 24 ( 5 ): 563 ‐ 577. doi: 10.1089/mdr.2017.0266
dc.identifier.citedreferenceSader HS, Castanheira M, Streit JM, Flamm RK. Frequency of occurrence and antimicrobial susceptibility of bacteria isolated from patients hospitalized with bloodstream infections in United States medical centers (2015–2017). Diagn Microbiol Infect Dis. 2019; 95 ( 3 ): 114850. doi: 10.1016/j.diagmicrobio.2019.06.002
dc.identifier.citedreferenceSader HS, Flamm RK, Carvalhaes CG, Castanheira M. Comparison of ceftazidime‐avibactam and ceftolozane‐tazobactam in vitro activities when tested against gram‐negative bacteria isolated from patients hospitalized with pneumonia in United States medical centers (2017–2018). Diagn Microbiol Infect Dis. 2020; 96 ( 3 ): 114833. doi: 10.1016/j.diagmicrobio.2019.05.005
dc.identifier.citedreferencePfaller MA, Shortridge D, Sader HS, Flamm RK, Castanheira M. Ceftolozane‐tazobactam activity against drug‐resistant Enterobacteriaceae and Pseudomonas aeruginosa causing healthcare‐associated infections in Australia and New Zealand: report from an antimicrobial surveillance program (2013–2015). J Glob Antimicrob Resist. 2017; 10: 186 ‐ 194. doi: 10.1016/j.jgar.2017.05.025
dc.identifier.citedreferencePfaller MA, Shortridge D, Sader HS, Gales A, Castanheira M, Flamm RK. Ceftolozane‐tazobactam activity against drug‐resistant Enterobacteriaceae and Pseudomonas aeruginosa causing healthcare‐associated infections in Latin America: report from an antimicrobial surveillance program (2013–2015). Braz J Infect Dis. 2017; 21 ( 6 ): 627 ‐ 637. doi: 10.1016/j.bjid.2017.06.008
dc.identifier.citedreferencePfaller MA, Bassetti M, Duncan LR, Castanheira M. Ceftolozane/tazobactam activity against drug‐resistant Enterobacteriaceae and Pseudomonas aeruginosa causing urinary tract and intraabdominal infections in Europe: report from an antimicrobial surveillance programme (2012–15). J Antimicrob Chemother. 2017; 72 ( 5 ): 1386 ‐ 1395. doi: 10.1093/jac/dkx009
dc.identifier.citedreferenceCastanheira M, Doyle TB, Mendes RE, Sader HS. Comparative activities of ceftazidime‐avibactam and ceftolozane‐tazobactam against Enterobacteriaceae isolates producing extended‐spectrum β‐lactamases from U.S. hospitals. Antimicrob Agents Chemother. 2019; 63 ( 7 ): e00160‐19. doi: 10.1128/aac.00160‐19
dc.identifier.citedreferenceNicasio AM, VanScoy BD, Mendes RE, et al. Pharmacokinetics‐pharmacodynamics of tazobactam in combination with piperacillin in an in vitro infection model. Antimicrob Agents Chemother. 2016; 60 ( 4 ): 2075 ‐ 2080. doi: 10.1128/AAC.02747‐15
dc.identifier.citedreferenceVanScoy B, Mendes RE, Nicasio AM, et al. Pharmacokinetics‐pharmacodynamics of tazobactam in combination with ceftolozane in an in vitro infection model. Antimicrob Agents Chemother. 2013; 57 ( 6 ): 2809 ‐ 2814. doi: 10.1128/AAC.02513‐12
dc.identifier.citedreferenceRizk ML, Bhavnani SM, Drusano G, et al. Considerations for dose selection and clinical pharmacokinetics/pharmacodynamics for the development of antibacterial agents. Antimicrob Agents Chemother. 2019; 63 ( 5 ): e02309‐18. doi: 10.1128/AAC.02309‐18
dc.identifier.citedreferenceJarrell AS, Kruer RM, Johnson D, Lipsett PA. Antimicrobial pharmacokinetics and pharmacodynamics. Surg Infect. 2015; 16 ( 4 ): 375 ‐ 379. doi: 10.1089/sur.2014.180
dc.identifier.citedreferenceCrass RL, Pai MP. Pharmacokinetics and pharmacodynamics of β‐lactamase inhibitors. Pharmacotherapy. 2019; 39 ( 2 ): 182 ‐ 195. doi: 10.1002/phar.2210
dc.identifier.citedreferenceMonogue ML, Nicolau DP. Pharmacokinetics‐pharmacodynamics of β‐lactamase inhibitors: are we missing the target? Expert Rev Anti Infect Ther. 2019; 17 ( 8 ): 571 ‐ 582. doi: 10.1080/14787210.2019.1647781
dc.identifier.citedreferenceAmbrose PG, Lomovskaya O, Griffith DC, Dudley MN, VanScoy B. β‐Lactamase inhibitors: what you really need to know. Curr Opin Pharmacol. 2017; 36: 86 ‐ 93. doi: 10.1016/j.coph.2017.09.001
dc.identifier.citedreferenceLouie A, Castanheira M, Liu W, et al. Pharmacodynamics of β‐lactamase inhibition by NXL104 in combination with ceftaroline: examining organisms with multiple types of β‐lactamases. Antimicrob Agents Chemother. 2012; 56 ( 1 ): 258 ‐ 270. doi: 10.1128/AAC.05005‐11
dc.identifier.citedreferenceVanScoy B, Mendes RE, McCauley J, et al. Pharmacological basis of β‐lactamase inhibitor therapeutics: tazobactam in combination with ceftolozane. Antimicrob Agents Chemother. 2013; 57 ( 12 ): 5924 ‐ 5930. doi: 10.1128/AAC.00656‐13
dc.identifier.citedreferenceBhagunde P, Chang K‐T, Hirsch EB, Ledesma KR, Nikolaou M, Tam VH. Novel modeling framework to guide design of optimal dosing strategies for β‐lactamase inhibitors. Antimicrob Agents Chemother. 2012; 56 ( 5 ): 2237 ‐ 2240. doi: 10.1128/AAC.06113‐11
dc.identifier.citedreferenceVanScoy BD, Rubino CM, McCauley J, et al. Determination of the tazobactam exposure required for piperacillin efficacy using a one‐compartment in vitro infection model. ASM Microbe; 2016.
dc.identifier.citedreferenceZhanel GG, Chung P, Adam H, et al. Ceftolozane/tazobactam: a novel cephalosporin/β‐lactamase inhibitor combination with activity against multidrug‐resistant gram‐negative bacilli. Drugs. 2014; 74 ( 1 ): 31 ‐ 51. doi: 10.1007/s40265‐013‐0168‐2
dc.identifier.citedreferenceBulik CC, Tessier PR, Keel RA, Sutherland CA, Nicolau DP. In vivo comparison of CXA‐101 (FR264205) with and without tazobactam versus piperacillin‐tazobactam using human simulated exposures against phenotypically diverse Gram‐negative organisms. Antimicrob Agents Chemother. 2012; 56 ( 1 ): 544 ‐ 549. doi: 10.1128/AAC.01752‐10
dc.identifier.citedreferenceCraig WA, Andes DR. In vivo activities of ceftolozane, a new cephalosporin, with and without tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae, including strains with extended‐spectrum β‐lactamases, in the thighs of neutropenic mice. Antimicrob Agents Chemother. 2013; 57 ( 4 ): 1577 ‐ 1582. doi: 10.1128/AAC.01590‐12
dc.identifier.citedreferenceZosyn Package Insert. Published online May 2012. Accessed March 22, 2021. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/050684s055s061_050750s016s020lbl.pdf.
dc.identifier.citedreferenceZerbaxa Package Insert. Published online September 2020. Accessed March 22, 2021. https://www.merck.com/product/usa/pi_circulars/z/zerbaxa/zerbaxa_pi.pdf.
dc.identifier.citedreferenceZhang Z, Patel YT, Fiedler‐Kelly J, Feng H‐P, Bruno CJ, Gao W. Population pharmacokinetic analysis for plasma and epithelial lining fluid ceftolozane/tazobactam concentrations in patients with ventilated nosocomial pneumonia. J Clin Pharmacol. 2021; 61 ( 2 ): 254 ‐ 268. doi: 10.1002/jcph.1733
dc.identifier.citedreferenceNicolau DP, De Waele J, Kuti JL, et al. Pharmacokinetics and pharmacodynamics of ceftolozane/tazobactam in critically ill patients with augmented renal clearance. Int J Antimicrob Agents. 2021; 57 ( 4 ): 106299. doi: 10.1016/j.ijantimicag.2021.106299
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.