Show simple item record

Evidence for Multiple Ferrel‐Like Cells on Jupiter

dc.contributor.authorDuer, Keren
dc.contributor.authorGavriel, Nimrod
dc.contributor.authorGalanti, Eli
dc.contributor.authorKaspi, Yohai
dc.contributor.authorFletcher, Leigh N.
dc.contributor.authorGuillot, Tristan
dc.contributor.authorBolton, Scott J.
dc.contributor.authorLevin, Steven M.
dc.contributor.authorAtreya, Sushil K.
dc.contributor.authorGrassi, Davide
dc.contributor.authorIngersoll, Andrew P.
dc.contributor.authorLi, Cheng
dc.contributor.authorLi, Liming
dc.contributor.authorLunine, Jonathan I.
dc.contributor.authorOrton, Glenn S.
dc.contributor.authorOyafuso, Fabiano A.
dc.contributor.authorWaite, J. Hunter
dc.date.accessioned2021-12-02T02:28:25Z
dc.date.available2023-01-01 21:28:23en
dc.date.available2021-12-02T02:28:25Z
dc.date.issued2021-12-16
dc.identifier.citationDuer, Keren; Gavriel, Nimrod; Galanti, Eli; Kaspi, Yohai; Fletcher, Leigh N.; Guillot, Tristan; Bolton, Scott J.; Levin, Steven M.; Atreya, Sushil K.; Grassi, Davide; Ingersoll, Andrew P.; Li, Cheng; Li, Liming; Lunine, Jonathan I.; Orton, Glenn S.; Oyafuso, Fabiano A.; Waite, J. Hunter (2021). "Evidence for Multiple Ferrel‐Like Cells on Jupiter." Geophysical Research Letters 48(23): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/170953
dc.description.abstractJupiter’s atmosphere is dominated by multiple jet streams which are strongly tied to its 3D atmospheric circulation. Lacking a rigid bottom boundary, several models exist for how the meridional circulation extends into the planetary interior. Here, we show, collecting evidence from multiple instruments of the Juno mission, the existence of midlatitudinal meridional circulation cells which are driven by turbulence, similar to the Ferrel cells on Earth. Different than Earth, which contains only one such cell in each hemisphere, the larger, faster rotating Jupiter can incorporate multiple cells. The cells form regions of upwelling and downwelling, which we show are clearly evident in Juno’s microwave data between latitudes 60°S $60{}^{circ}mathrm{S}$ and 60°N $60{}^{circ}mathrm{N}$. The existence of these cells is confirmed by reproducing the ammonia observations using a simplistic model. This study solves a long‐standing puzzle regarding the nature of Jupiter’s subcloud dynamics and provides evidence for eight cells in each Jovian hemisphere.Plain Language SummaryThe cloud layer of Jupiter is divided into dark and bright bands that are shaped by strong east‐west winds. Such winds in planetary atmospheres are thought to be tied with a meridional circulation. The Juno mission collected measurements of Jupiter’s atmosphere at various wavelengths, which penetrate the cloud cover. Here, we provide evidence, using the Juno data, of eight deep Jovian circulation cells in each hemisphere encompassing the east‐west winds, gaining energy from atmospheric waves, and extending at least to a depth of hundreds of kilometers. Different than Earth, which has only one analogous cell in each hemisphere, known as a Ferrel cell, Jupiter can contain more cells due to its larger size and faster spin. To support the presented evidence, we modeled how ammonia gas would spread under the influence of such cells and compared it to the Juno measurements. The presented results shed light on the unseen flow structure beneath Jupiter’s clouds.Key PointsMeasurements from multiple instruments of the Juno mission are interpreted to reveal the meridional circulation beneath Jupiter’s clouds16 Jet‐paired deep cells, extending from the cloud deck down to at least 240 bar, are revealed between latitudes 60°S $60{}^{circ}mathrm{S}$ and 60°N $60{}^{circ}mathrm{N}$, driven by turbulence similar to Earth’s Ferrel cellsThe findings are supported by modeling the advection of tracers due to the cells, showing agreement with NH3 ${mathrm{N}mathrm{H}}_{3}$ data
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherzonal jets
dc.subject.othersuperrotation
dc.subject.otherFerrel cells
dc.subject.otherJuno
dc.subject.othermeridional circulation cells
dc.subject.otherJupiter
dc.titleEvidence for Multiple Ferrel‐Like Cells on Jupiter
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170953/1/grl63251.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170953/2/grl63251_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170953/3/2021GL095651-sup-0001-Supporting_Information_SI-S01.pdf
dc.identifier.doi10.1029/2021GL095651
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceLi, C., Ingersoll, A., Janssen, M., Levin, S., Bolton, S., Adumitroaie, V., et al. ( 2017 ). The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophysical Research Letters, 44, 5317 – 5325. https://doi.org/10.1002/2017GL073159
dc.identifier.citedreferenceGuillot, T., Miguel, Y., Militzer, B., Hubbard, W. B., Kaspi, Y., Galanti, E., et al. ( 2018 ). A suppression of differential rotation in Jupiter’s deep interior. Nature, 555, 227 – 230. https://doi.org/10.1038/nature25775
dc.identifier.citedreferenceGuillot, T., Stevenson, D. J., Atreya, S. K., Bolton, S. J., & Becker, H. N. ( 2020 ). Storms and the depletion of ammonia in Jupiter: I. Microphysics of mush balls. Journal of Geophysical Research: Planets, 125, e2020JE006403. https://doi.org/10.1029/2020JE006403
dc.identifier.citedreferenceHeimpel, M., Aurnou, J., & Wicht, J. ( 2005 ). Simulation of equatorial and high‐latitude jets on Jupiter in a deep convection model. Nature, 438, 193 – 196. https://doi.org/10.1038/nature04208
dc.identifier.citedreferenceIess, L., Folkner, W. M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., et al. ( 2018 ). Measurement of Jupiter’s asymmetric gravity field. Nature, 555 ( 7695 ), 220 – 222. https://doi.org/10.1038/nature25776
dc.identifier.citedreferenceImamura, T., Mitchell, J., Lebonnois, S., Kaspi, Y., Showman, A. P., & Korablev, O. ( 2020 ). Superrotation in planetary atmospheres. Space Science Reviews, 216 ( 5 ), 87. https://doi.org/10.1007/s11214-020-00703-9
dc.identifier.citedreferenceIngersoll, A. P., Adumitroaie, V., Allison, M. D., Atreya, S., Bellotti, A. A., Bolton, S. J., et al. ( 2017 ). Implications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer. Geophysical Research Letters, 44, 7676 – 7685. https://doi.org/10.1002/2017GL074277
dc.identifier.citedreferenceIngersoll, A. P., Atreya, S., Bolton, S. J., Brueschaber, S., Fletcher, L. N., Galanti, E., & Waite, H. ( 2021 ). Jupiter’s overturning circulation: Breaking waves take the place of solid boundaries. Geophysical Research Letters, 48. https://doi.org/10.1029/2021GL095756
dc.identifier.citedreferenceIngersoll, A. P., Gierasch, P. J., Banfield, D., Vasavada, A. R., & Galileo Imaging Team. ( 2000 ). Moist convection as an energy source for the large‐scale motions in Jupiter’s atmosphere. Nature, 403, 630 – 632. https://doi.org/10.1038/35001021
dc.identifier.citedreferenceJanssen, M. A., Oswald, J. E., Brown, S. T., Gulkis, S., Levin, S. M., Bolton, S. J., et al. ( 2017 ). MWR: Microwave radiometer for the Juno mission to Jupiter. Space Science Reviews, 213 ( 1–4 ), 139 – 185. https://doi.org/10.1007/s11214-017-0349-5
dc.identifier.citedreferenceJuckes, M. ( 2001 ). A generalization of the transformed Eulerian‐mean meridional circulation. Quarterly Journal of the Royal Meteorological Society, 127 ( 571 ), 147 – 160. https://doi.org/10.1002/qj.49712757109
dc.identifier.citedreferenceKaspi, Y., Flierl, G. R., & Showman, A. P. ( 2009 ). The deep wind structure of the giant planets: Results from an anelastic general circulation model. Icarus, 202, 525 – 542. https://doi.org/10.1016/j.icarus.2009.03.026
dc.identifier.citedreferenceKaspi, Y., Galanti, E., Hubbard, W. B., Stevenson, D. J., Bolton, S. J., Iess, L., et al. ( 2018 ). Jupiter’s atmospheric jet‐streams extend thousands of kilometres deep. Nature, 555, 223 – 226. https://doi.org/10.1038/nature25793
dc.identifier.citedreferenceKaspi, Y., Galanti, E., Showman, A. P., Stevenson, D. J., Guillot, T., Iess, L., & Bolton, S. J. ( 2020 ). Comparison of the deep atmospheric dynamics of Jupiter and Saturn in light of the Juno and Cassini gravity measurements. Space Science Reviews, 216 ( 5 ), 84. https://doi.org/10.1007/s11214-020-00705-7
dc.identifier.citedreferenceLaraia, A. L., & Schneider, T. ( 2015 ). Superrotation in terrestrial atmospheres. Journal of the Atmospheric Sciences, 72 ( 11 ), 4281 – 4296. https://doi.org/10.1175/jas-d-15-0030.1
dc.identifier.citedreferenceLee, S., & Kaspi, Y. ( 2021 ). Towards an understanding of the structure of Jupiter’s atmosphere using the ammonia distribution and the Transformed Eulerian mean theory. Journal of the Atmospheric Sciences, 78 ( 7 ), 2047 – 2056. https://doi.org/10.1175/jas-d-20-0342.1
dc.identifier.citedreferenceLewis, S. R., Read, P. L., Conrath, B. J., Pearl, J. C., & Smith, M. D. ( 2007 ). Assimilation of thermal emission spectrometer atmospheric data during the Mars Global Surveyor aerobraking period. Icarus, 192 ( 2 ), 327 – 347. https://doi.org/10.1016/j.icarus.2007.08.009
dc.identifier.citedreferenceLi, C., Ingersoll, A., Bolton, S., Levin, S., Janssen, M., Atreya, S., et al. ( 2020 ). The water abundance in Jupiter’s equatorial zone. Nature Astronomy, 4 ( 6 ), 609 – 616. https://doi.org/10.1038/s41550-020-1009-3
dc.identifier.citedreferenceLimaye, S. S. ( 2007 ). Venus atmospheric circulation: Known and unknown. Journal of Geophysical Research, 112, E04S09. https://doi.org/10.1029/2006JE002814
dc.identifier.citedreferenceLittle, B., Anger, C. D., Ingersoll, A. P., Vasavada, A. R., Senske, D. A., Breneman, H. H., & Team, T. G. S. ( 1999 ). Galileo images of lightning on Jupiter. Icarus, 142 ( 2 ), 306 – 323. https://doi.org/10.1006/icar.1999.6195
dc.identifier.citedreferenceLiu, J., Goldreich, P. M., & Stevenson, D. J. ( 2008 ). Constraints on deep‐seated zonal winds inside Jupiter and Saturn. Icarus, 196, 653 – 664. https://doi.org/10.1016/j.icarus.2007.11.036
dc.identifier.citedreferenceLiu, J., & Schneider, T. ( 2010 ). Mechanisms of jet formation on the giant planets. Journal of the Atmospheric Sciences, 67, 3652 – 3672. https://doi.org/10.1175/2010jas3492.1
dc.identifier.citedreferenceMiesch, M. S., & Hindman, B. W. ( 2011 ). Gyroscopic pumping in the solar near‐surface shear layer. The Astrophysical Journal, 743 ( 1 ), 79. https://doi.org/10.1088/0004-637x/743/1/79
dc.identifier.citedreferenceOyafuso, F., Levin, S., Orton, G., Brown, S., Adumitroaie, V., Janssen, M., et al. ( 2020 ). Angular dependence and spatial distribution of Jupiter’s centimeter‐wave thermal emission from Juno’s microwave radiometer. Earth and Planetary Science Letters, 7, e2020EA001254. https://doi.org/10.1029/2020EA001254
dc.identifier.citedreferencePorco, C. C., West, R. A., McEwen, A., Del Genio, A. D., Ingersoll, A. P., Thomas, P., & Vasavada, A. R. ( 2003 ). Cassini imaging of Jupiter’s atmosphere, satellites and rings. Science, 299, 1541 – 1547. https://doi.org/10.1126/science.1079462
dc.identifier.citedreferencePotter, S. F., Vallis, G. K., & Mitchell, J. L. ( 2014 ). Spontaneous superrotation and the role of Kelvin waves in an idealized dry GCM. Journal of the Atmospheric Sciences, 71 ( 2 ), 596 – 614. https://doi.org/10.1175/jas-d-13-0150.1
dc.identifier.citedreferenceRead, P. L., Lewis, S. R., & Vallis, G. K. ( 2018 ). Atmospheric dynamics of terrestrial planets. Handbook of Exoplanets, 144, 2537 – 2557. https://doi.org/10.1007/978-3-319-30648-3_50-2
dc.identifier.citedreferenceSalyk, C., Ingersoll, A. P., Lorre, J., Vasavada, A., & Del Genio, A. D. ( 2006 ). Interaction between eddies and mean flow in Jupiter’s atmosphere: Analysis of Cassini imaging data. Icarus, 185, 430 – 442. https://doi.org/10.1016/j.icarus.2006.08.007
dc.identifier.citedreferenceSchneider, T. ( 2006 ). The general circulation of the atmosphere. Annual Review of Earth and Planetary Sciences, 34, 655 – 688. https://doi.org/10.1146/annurev.earth.34.031405.125144
dc.identifier.citedreferenceSchneider, T., & Liu, J. ( 2009 ). Formation of jets and equatorial superrotation on Jupiter. Journal of the Atmospheric Sciences, 66, 579 – 601. https://doi.org/10.1175/2008jas2798.1
dc.identifier.citedreferenceShowman, A. P., & de Pater, I. ( 2005 ). Dynamical implications of Jupiter’s tropospheric ammonia abundance. Icarus, 174, 192 – 204. https://doi.org/10.1016/j.icarus.2004.10.004
dc.identifier.citedreferenceTaylor, F. W., Atreya, S. K., Encrenaz, T. H., Hunten, D. M., Irwin, P. G., & Owen, T. C. ( 2004 ). Jupiter: The planet, satellites and magnetosphere (pp. 59 – 78 ). Cambridge University Press.
dc.identifier.citedreferenceTollefson, J., Wong, M. H., de Pater, I., Simon, A. A., Orton, G. S., Rogers, J. H., et al. ( 2017 ). Changes in Jupiter’s zonal wind profile preceding and during the Juno mission. Icarus, 296, 163 – 178. https://doi.org/10.1016/j.icarus.2017.06.007
dc.identifier.citedreferenceVallis, G. K. ( 2017 ). Atmospheric and oceanic fluid dynamics ( 2nd ed., p. 770 ). Cambridge University Press.
dc.identifier.citedreferenceVasavada, A. R., & Showman, A. P. ( 2005 ). Jovian atmospheric dynamics: An update after Galileo and Cassini. Reports on Progress in Physics, 68, 1935 – 1996. https://doi.org/10.1088/0034-4885/68/8/r06
dc.identifier.citedreferenceWicht, J., & Gastine, T. ( 2020 ). Numerical simulations help revealing the dynamics underneath the clouds of Jupiter. Nature Communications, 11 ( 1 ), 2886. https://doi.org/10.1038/s41467-020-16680-0
dc.identifier.citedreferenceWicht, J., Gastine, T., Duarte, L. D., & Dietrich, W. ( 2019 ). Dynamo action of the zonal winds in Jupiter. Astronomy and Astrophysics, 629, A125. https://doi.org/10.1051/0004-6361/201935682
dc.identifier.citedreferenceYoung, R. M., & Read, P. L. ( 2017 ). Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer. Nature Physics, 13 ( 11 ), 1135 – 1140. https://doi.org/10.1038/nphys4227
dc.identifier.citedreferenceYoung, R. M., Read, P. L., & Wang, Y. ( 2019 ). Simulating Jupiter’s weather layer. Part I: Jet spin‐up in a dry atmosphere. Icarus, 326, 225 – 252. https://doi.org/10.1016/j.icarus.2018.12.005
dc.identifier.citedreferenceAurnou, J. M., & Olson, P. L. ( 2001 ). Strong zonal winds from thermal convection in a rotating spherical shell. Geophysical Research Letters, 28 ( 13 ), 2557 – 2559. https://doi.org/10.1029/2000GL012474
dc.identifier.citedreferenceBolton, S. J., Adriani, A., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S., et al. ( 2017 ). Jupiter’s interior and deep atmosphere: The initial pole‐to‐pole passes with the Juno spacecraft. Science, 356, 821 – 825. https://doi.org/10.1126/science.aal2108
dc.identifier.citedreferenceBrown, S., Janssen, M., Adumitroaie, V., Atreya, S., Bolton, S., Gulkis, S., et al. ( 2018 ). Prevalent lightning sferics at 600 megahertz near Jupiter’s poles. Nature, 558 ( 7708 ), 87 – 90. https://doi.org/10.1038/s41586-018-0156-5
dc.identifier.citedreferenceBusse, F. H. ( 1976 ). A simple model of convection in the Jovian atmosphere. Icarus, 29, 255 – 260. https://doi.org/10.1016/0019-1035(76)90053-1
dc.identifier.citedreferenceBusse, F. H. ( 2002 ). Convective flows in rapidly rotating spheres and their dynamo action. Physics of Fluids, 14, 1301 – 1314. https://doi.org/10.1063/1.1455626
dc.identifier.citedreferenceChristensen, U. R. ( 2002 ). Zonal flow driven by strongly supercritical convection in rotating spherical shells. Journal of Computational Physics, 470, 115 – 133. https://doi.org/10.1017/s0022112002002008
dc.identifier.citedreferenceChristensen, U. R., Wicht, J., & Dietrich, W. ( 2020 ). Mechanisms for limiting the depth of zonal winds in the gas giant planets. The Astrophysical Journal, 890 ( 1 ), 61. https://doi.org/10.3847/1538-4357/ab698c
dc.identifier.citedreferenceDebras, F., & Chabrier, G. ( 2019 ). New models of Jupiter in the context of Juno and Galileo. The Astrophysical Journal, 872 ( 1 ), 100. https://doi.org/10.3847/1538-4357/aaff65
dc.identifier.citedreferencede Pater, I., Dunn, D., Romani, P., & Zahnle, K. ( 2001 ). Reconciling Galileo probe data and ground‐based radio observations of ammonia on Jupiter. Icarus, 149 ( 1 ), 66 – 78. https://doi.org/10.1006/icar.2000.6527
dc.identifier.citedreferencede Pater, I., Sault, R. J., Wong, M. H., Fletcher, L. N., DeBoer, D., & Butler, B. ( 2019 ). Jupiter’s ammonia distribution derived from VLA maps at 3‐37 GHz. Icarus, 322, 168 – 191. https://doi.org/10.1016/j.icarus.2018.11.024
dc.identifier.citedreferenceDietrich, W., & Jones, C. A. ( 2018 ). Anelastic spherical dynamos with radially variable electrical conductivity. Icarus, 305, 15 – 32. https://doi.org/10.1016/j.icarus.2018.01.003
dc.identifier.citedreferenceDuer, K., Galanti, E., & Kaspi, Y. ( 2020 ). The range of Jupiter’s flow structures that fit the Juno asymmetric gravity measurements. Journal of Geophysical Research: Planets, 125, e2019JE006292. https://doi.org/10.1029/2019JE006292
dc.identifier.citedreferenceFletcher, L. N., Greathouse, T. K., Orton, G. S., Sinclair, J. A., Giles, R. S., Irwin, P. G., & Encrenaz, T. ( 2016 ). Mid‐infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES. Icarus, 278, 128 – 161. https://doi.org/10.1016/j.icarus.2016.06.008
dc.identifier.citedreferenceFletcher, L. N., Kaspi, Y., Guillot, T., & Showman, A. P. ( 2020 ). How well do we understand the belt/zone circulation of Giant Planet atmospheres? Space Science Reviews, 216 ( 2 ), 30. https://doi.org/10.1007/s11214-019-0631-9
dc.identifier.citedreferenceFletcher, L. N., Oyafuso, F. A., Allison, M., Ingersoll, A., Li, L., Kaspi, Y., et al. ( 2021 ). Jupiter’s temperate belt/zone contrasts revealed at depth by Juno microwave observations. Journal of Geophysical Research: Planets, 126 ( 10 ). https://doi.org/10.1029/2021JE006858
dc.identifier.citedreferenceGalanti, E., & Kaspi, Y. ( 2021 ). Combined magnetic and gravity measurements probe the deep zonal flows of the gas giants. Monthly Notices of the Royal Astronomical Society, 501 ( 2 ), 2352 – 2362. https://doi.org/10.1093/mnras/staa3722
dc.identifier.citedreferenceGalanti, E., Kaspi, Y., Duer, K., Fletcher, L. N., Ingersoll, A., Cheng, L., et al. ( 2021 ). Constraints on the latitudinal profile of Jupiter’s deep jets. Geophysical Research Letters, 48, e2021GL092912. https://doi.org/10.1029/2021GL092912
dc.identifier.citedreferenceGarcıa‐Melendo, E., & Sánchez‐Lavega, A. ( 2001 ). A study of the stability of Jovian zonal winds from HST images: 1995–2000. Icarus, 152 ( 2 ), 316 – 330. https://doi.org/10.1006/icar.2001.6646
dc.identifier.citedreferenceGastine, T., Wicht, J., Duarte, L. D. V., Heimpel, M., & Becker, A. ( 2014 ). Explaining Jupiter’s magnetic field and equatorial jet dynamics. Geophysical Research Letters, 41, 5410 – 5419. https://doi.org/10.1002/2014GL060814
dc.identifier.citedreferenceGierasch, P. J., Magalhaes, J. A., & Conrath, B. J. ( 1986 ). Zonal mean properties of Jupiter’s upper troposphere from Voyager infrared observations. Icarus, 67, 456 – 483. https://doi.org/10.1016/0019-1035(86)90125-9
dc.identifier.citedreferenceGiles, R. S., Fletcher, L. N., Irwin, P. G., Orton, G. S., & Sinclair, J. A. ( 2017 ). Ammonia in Jupiter’s troposphere from high‐resolution 5 μm spectroscopy. Geophysical Research Letters, 44, 10838 – 10844. https://doi.org/10.1002/2017GL075221
dc.identifier.citedreferenceGrassi, D., Adriani, A., Moriconi, M. L., Ignatiev, N. I., D’Aversa, E., Colosimo, F., et al. ( 2010 ). Jupiter’s hot spots: Quantitative assessment of the retrieval capabilities of future IR spectro‐imagers. Planetary and Space Science, 58 ( 10 ), 1265 – 1278. https://doi.org/10.1016/j.pss.2010.05.003
dc.identifier.citedreferenceGrassi, D., Adriani, A., Mura, A., Atreya, S. K., Fletcher, L. N., Lunine, J. I., & Turrini, D. ( 2020 ). On the spatial distribution of minor species in Jupiter’s troposphere as inferred from Juno JIRAM data. Journal of Geophysical Research: Planets, 125, e2019JE006206. https://doi.org/10.1029/2019JE006206
dc.identifier.citedreferenceGuillot, T., Li, C., Bolton, S. J., Brown, S. T., Ingersoll, A. P., Janssen, M. A., & Stevenson, D. J. ( 2020 ). Storms and the depletion of ammonia in Jupiter: II. Explaining the Juno observations. Journal of Geophysical Research: Planets, 125, e2020JE006404. https://doi.org/10.1029/2020JE006404
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.