Show simple item record

A simulation study of ionizing radiation acoustic imaging (iRAI) as a real‐time dosimetric technique for ultra‐high dose rate radiotherapy (UHDR‐RT)

dc.contributor.authorBa Sunbul, Noora H.
dc.contributor.authorZhang, Wei
dc.contributor.authorOraiqat, Ibrahim
dc.contributor.authorLitzenberg, Dale W.
dc.contributor.authorLam, Kwok L.
dc.contributor.authorCuneo, Kyle
dc.contributor.authorMoran, Jean M.
dc.contributor.authorCarson, Paul L.
dc.contributor.authorWang, Xueding
dc.contributor.authorClarke, Shaun D.
dc.contributor.authorMatuszak, Martha M.
dc.contributor.authorPozzi, Sara A.
dc.contributor.authorEl Naqa, Issam
dc.date.accessioned2021-12-02T02:28:43Z
dc.date.available2022-11-01 21:28:42en
dc.date.available2021-12-02T02:28:43Z
dc.date.issued2021-10
dc.identifier.citationBa Sunbul, Noora H.; Zhang, Wei; Oraiqat, Ibrahim; Litzenberg, Dale W.; Lam, Kwok L.; Cuneo, Kyle; Moran, Jean M.; Carson, Paul L.; Wang, Xueding; Clarke, Shaun D.; Matuszak, Martha M.; Pozzi, Sara A.; El Naqa, Issam (2021). "A simulation study of ionizing radiation acoustic imaging (iRAI) as a real‐time dosimetric technique for ultra‐high dose rate radiotherapy (UHDR‐RT)." Medical Physics 48(10): 6137-6151.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/170961
dc.description.abstractPurposeElectron‐based ultra‐high dose rate radiation therapy (UHDR‐RT), also known as Flash‐RT, has shown the ability to improve the therapeutic index in comparison to conventional radiotherapy (CONV‐RT) through increased sparing of normal tissue. However, the extremely high dose rates in UHDR‐RT have raised the need for accurate real‐time dosimetry tools. This work aims to demonstrate the potential of the emerging technology of Ionized Radiation Acoustic Imaging (iRAI) through simulation studies and investigate its characteristics as a promising relative in vivo dosimetric tool for UHDR‐RT.MethodsThe detection of induced acoustic waves following a single UHDR pulse of a modified 6 MeV 21EX Varian Clinac in a uniform porcine gelatin phantom that is brain‐tissue equivalent was simulated for an ideal ultrasound transducer. The full 3D dose distributions in the phantom for a 1 × 1 cm2 field were simulated using EGSnrc (BEAMnrc∖DOSXYZnrc) Monte Carlo (MC) codes. The relative dosimetry simulations were verified with dose experimental measurements using Gafchromic films. The spatial dose distribution was converted into an initial pressure source spatial distribution using the medium‐dependent dose–pressure relation. The MATLAB‐based toolbox k‐Wave was then used to model the propagation of acoustic waves through the phantom and perform time‐reversal (TR)‐based imaging reconstruction. The effect of the various linear accelerator (linac) operating parameters, including linac pulse duration and pulse repetition rate (frequency), were investigated as well.ResultsThe MC dose simulation results agreed with the film measurement results, specifically at the central beam region up to 80% dose within approximately 5% relative error for the central profile region and a local relative error of <6% for percentage dose depth. IRAI‐based FWHM of the radiation beam was within approximately 3 mm relative to the MC‐simulated beam FWHM at the beam entrance. The real‐time pressure signal change agreed with the dose changes proving the capability of the iRAI for predicting the beam position. IRAI was tested through 3D simulations of its response to be based on the temporal changes in the linac operating parameters on a dose per pulse basis as expected theoretically from the pressure‐dose proportionality. The pressure signal amplitude obtained through 2D simulations was proportional to the dose per pulse. The instantaneous pressure signal amplitude decreases as the linac pulse duration increases, as predicted from the pressure wave generation equations, such that the shorter the linac pulse the higher the signal and the better the temporal (spatial) resolutions of iRAI. The effect of the longer linac pulse duration on the spatial resolution of the 3D constructed iRAI images was corrected for linac pulse deconvolution. This correction has improved the passing rate of the 1%/1 mm gamma test criteria, between the pressure‐constructed and dosimetric beam characteristics, to as high as 98%.ConclusionsA full simulation workflow was developed for testing the effectiveness of iRAI as a promising relative dosimetry tool for UHDR‐RT radiation therapy. IRAI has shown the advantage of 3D dose mapping through the dose signal linearity and, hence, has the potential to be a useful dosimeter at depth dose measurement and beam localization and, hence, potentially for in vivo dosimetry in UHDR‐RT.
dc.publisherIAEA
dc.publisherWiley Periodicals, Inc.
dc.subject.otherUHDR (Flash) radiotherapy
dc.subject.otherradiation acoustics
dc.subject.otherMonte Carlo
dc.subject.otherin vivo dosimetry
dc.titleA simulation study of ionizing radiation acoustic imaging (iRAI) as a real‐time dosimetric technique for ultra‐high dose rate radiotherapy (UHDR‐RT)
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170961/1/mp15188_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170961/2/mp15188.pdf
dc.identifier.doi10.1002/mp.15188
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceLohse I, Lang S, Hrbacek J, et al. Effect of high dose per pulse flattening filter‐free beams on cancer cell survival. Radiother Oncol. 2011; 101 ( 1 ): 226 ‐ 232.
dc.identifier.citedreferenceSchüler E, Trovati S, King G, et al. Experimental platform for ultra‐high dose rate FLASH irradiation of small animals using a clinical linear accelerator. Int J Radiat Oncol Biol Phys. 2017; 97 ( 1 ): 195 ‐ 203.
dc.identifier.citedreferenceFavaudon V, Caplier L, Monceau V, et al. Erratum: ultrahigh dose‐rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2019; 11 ( 523 ): 1 ‐ 10.
dc.identifier.citedreferenceMontay‐Gruel P, Bouchet A, Jaccard M, et al. X‐rays can trigger the FLASH effect: ultra‐high dose‐rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiother Oncol. 2018; 129 ( 3 ): 582 ‐ 588.
dc.identifier.citedreferenceSimmons DA, Lartey FM, Schüler E, et al. Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiother Oncol. 2019; 139: 4 ‐ 10.
dc.identifier.citedreferenceVozenin MC, De Fornel P, Petersson K, et al. The advantage of FLASH radiotherapy confirmed in mini‐pig and cat‐cancer patients. Clin Cancer Res. 2019; 25 ( 1 ): 35 ‐ 42.
dc.identifier.citedreferenceMontay‐Gruel P, Petersson K, Jaccard M, et al. Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother Oncol. 2017; 124 ( 3 ): 365 ‐ 369.
dc.identifier.citedreferenceBourhis J, Sozzi WJ, Jorge PG, et al. Treatment of a first patient with FLASH‐radiotherapy. Radiother Oncol. 2019; 139: 18 ‐ 22.
dc.identifier.citedreferenceForghani F, Mahl A, Patton TJ, et al. Simulation of x‐ray‐induced acoustic imaging for absolute dosimetry: accuracy of image reconstruction methods. Med Phys. 2020; 47 ( 3 ): 1280 ‐ 1290.
dc.identifier.citedreferenceHickling S, Hobson M, El Naqa I. Characterization of X‐ray acoustic computed tomography for applications in radiotherapy dosimetry. IEEE Transactions on Radiation and Plasma Medical Sciences. 2018; 2 ( 4 ): 337 ‐ 344.
dc.identifier.citedreferenceIAEA. Radiation oncology physics: A handbook for teachers and students. Vol 52; 2005. Vienna: IAEA.
dc.identifier.citedreferenceHristova Y, Kuchment P, Nguyen L. Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Problems. 2008; 24 ( 5 ): 055006.
dc.identifier.citedreferenceXu Y, Wang LV. Time reversal and its application to tomography with diffracting sources. Phys Rev Lett. 2004; 92 ( 3 ): 4.
dc.identifier.citedreferenceBurgholzer P, Matt GJ, Haltmeier M, Paltauf G. Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface. Physical Review E‐Statistical, Nonlinear, and Soft Matter Physics. 2007; 75 ( 4 ): 1 ‐ 10.
dc.identifier.citedreferenceOraiqat I, Zhang W, Litzenberg D, et al. An ionizing radiation acoustic imaging (iRAI) technique for real‐time dosimetric measurements for FLASH radiotherapy. Med Phys. 2020; 47 ( 10 ): 5090 ‐ 5101.
dc.identifier.citedreferenceZhang W, Oraiqat I, Lei H, Carson PL, Naqa IEI, Wang X. Dual‐modality X‐ray‐induced radiation acoustic and ultrasound imaging for real‐time monitoring of radiotherapy. BME Frontiers. 2020; 2020: 9853609.
dc.identifier.citedreferenceChoi S, Lee D, Park E‐Y, Min J‐J, Lee C, Kim C, 3D X‐ray induced acoustic computed tomography: a phantom study. 2020;:168.SPIE BiOS, 2020, San Francisco, California, United States.
dc.identifier.citedreferenceTang S, Yang K, Chen Y, Xiang L. X‐ray‐induced acoustic computed tomography for 3D breast imaging: a simulation study. Med Phys. 2018; 45 ( 4 ): 1662 ‐ 1672.
dc.identifier.citedreferenceRoss CK, Klassen NV, Shortt KR, Smith GD. A direct comparison of water calorimetry and Fricke dosimetry. Physics Med Biol. 1989; 34 ( 1 ): 23 ‐ 42.
dc.identifier.citedreferenceRogers DWO, Walters B, Kawrakow I. BEAMnrc Users Manual. Nrc Report Pirs. 2009.
dc.identifier.citedreferenceWalters B, Kawrakow I, Rogers DWO. DOSXYZnrc Users Manual. Nrc Report Pirs. 2005.
dc.identifier.citedreferenceSzabo TL. Diagnostic Ultrasound Imaging: Inside Out. 2004.
dc.identifier.citedreferenceMast TD. Empirical relationships between acoustic parameters in human soft tissues. Acoustic Research Letters Online. 2000; 1: 37 ‐ 42.
dc.identifier.citedreferenceTreeby BE, Cox BT. k‐Wave: mATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J Biomed Opt. 2010; 15 ( 2 ): 021314.
dc.identifier.citedreferenceSamant P, Trevisi L, Ji X, Xiang L. X‐ray induced acoustic computed tomography. Photoacoustics. 2020; 19: 100177.
dc.identifier.citedreferenceDRT Sampaio, Uliana JH, Carneiro AAO, Pavoni JF, Pavan TZ, Borges LF. X‐ray acoustic imaging for external beam radiation therapy dosimetry using a commercial ultrasound scanner. 2015 IEEE International Ultrasonics Symposium, IUS. 2015; 2015: 15 ‐ 18.
dc.identifier.citedreferenceHickling S, Léger P, El Naqa I. On the detectability of acoustic waves induced following irradiation by a radiotherapy linear accelerator. IEEE Trans Ultrason Ferroelectr Freq Control. 2016; 63 ( 5 ): 683 ‐ 690.
dc.identifier.citedreferenceHickling S, Lei H, Hobson M, Léger P, Wang X, El Naqa I. Experimental evaluation of x‐ray acoustic computed tomography for radiotherapy dosimetry applications. Med Phys. 2017; 44 ( 2 ): 608 ‐ 617.
dc.identifier.citedreferenceXiang L, Han B, Carpenter C, Pratx G, Kuang Y, Xing L. X‐ray acoustic computed tomography with pulsed X‐ray beam from a medical linear accelerator. Med Phys. 2013; 40 ( 1 ): 1 ‐ 5.
dc.identifier.citedreferenceLei H, Zhang W, Oraiqat I, et al. Toward in vivo dosimetry in external beam radiotherapy using x‐ray acoustic computed tomography: a soft‐tissue phantom study validation. Med Phys. 2018; 45 ( 9 ): 4191 ‐ 4200.
dc.identifier.citedreferenceXiang L, Han B, Carpenter C, Pratx G, Kuang Y, Xing L. X‐ray induced photoacoustic tomography. Photons Plus Ultrasound: Imaging and Sensing 2013. 2013; 8581: 85811I.
dc.identifier.citedreferenceHickling S, Xiang L, Jones KC, et al. Ionizing radiation‐induced acoustics for radiotherapy and diagnostic radiology applications. Med Phys. 2018; 45 ( 7 ): e707 ‐ e721.
dc.identifier.citedreferenceXiang L, Tang S, Ahmad M, Xing L. High resolution X‐ray‐induced acoustic tomography. Sci Rep. 2016; 6: 2 ‐ 7.
dc.identifier.citedreferenceLi Y, Samant P, Wang S, Behrooz A, Li D, Xiang L. 3‐D X‐ray‐induced acoustic computed tomography with a spherical array: a simulation study on bone imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2020; 67 ( 8 ): 1613 ‐ 1619.
dc.identifier.citedreferencedi Martino F, Barca P, Barone S, et al. FLASH radiotherapy with electrons: issues related to the production, monitoring, and dosimetric characterization of the beam. Front Phys. 2020; 8.
dc.identifier.citedreferenceLempart M, Blad B, Adrian G, et al. Modifying a clinical linear accelerator for delivery of ultra‐high dose rate irradiation. Radiother Oncol. 2019; 139: 40 ‐ 45.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.