Show simple item record

Triggered Reversible Disassembly of an Engineered Protein Nanocage**

dc.contributor.authorJones, Jesse A.
dc.contributor.authorCristie‐David, Ajitha S.
dc.contributor.authorAndreas, Michael P.
dc.contributor.authorGiessen, Tobias W.
dc.date.accessioned2021-12-02T02:29:27Z
dc.date.available2022-12-01 21:29:25en
dc.date.available2021-12-02T02:29:27Z
dc.date.issued2021-11-15
dc.identifier.citationJones, Jesse A.; Cristie‐David, Ajitha S. ; Andreas, Michael P.; Giessen, Tobias W. (2021). "Triggered Reversible Disassembly of an Engineered Protein Nanocage**." Angewandte Chemie International Edition 60(47): 25034-25041.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/170980
dc.description.abstractProtein nanocages play crucial roles in sub- cellular compartmentalization and spatial control in all domains of life and have been used as biomolecular tools for applications in biocatalysis, drug delivery, and bionanotechnology. The ability to control their assembly state under physiological conditions would further expand their practical utility. To gain such control, we introduced a peptide capable of triggering conformational change at a key structural position in the largest known encapsulin nanocompartment. We report the structure of the resulting engineered nanocage and demonstrate its ability to disassemble and reassemble on demand under physiological conditions. We demonstrate its capacity for in vivo encapsulation of proteins of choice while also demonstrating in vitro cargo loading capabilities. Our results represent a functionally robust addition to the nanocage toolbox and a novel approach for controlling protein nanocage disassembly and reassembly under mild conditions.A novel protein nanocage has been developed capable of on- demand reversible disassembly via simple buffer exchanges under mild conditions. Data presented herein also show the nanocage is capable of in vivo and in vitro cargo loading, suggesting a broad range of possible applications in biocatalysis, bionanotechnology, and biomedicine. Additional findings include structure determination and protein design verification via cryo- electron microscopy.
dc.publisherWiley Periodicals, Inc.
dc.subject.othernanocage
dc.subject.otherbioengineering
dc.subject.otherdisassembly
dc.subject.otherencapsulin
dc.subject.othersynthetic biology
dc.titleTriggered Reversible Disassembly of an Engineered Protein Nanocage**
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170980/1/anie202110318_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170980/2/anie202110318-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170980/3/anie202110318.pdf
dc.identifier.doi10.1002/anie.202110318
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceM. G. Romei, S. G. Boxer, Annu. Rev. Biophys. 2019, 48, 19 - 44.
dc.identifier.citedreferenceY. Bae, G. J. Kim, H. Kim, S. G. Park, H. S. Jung, S. Kang, Biomacromolecules 2018, 19, 2896 - 2904; P. Lagoutte, C. Mignon, G. Stadthagen, S. Potisopon, S. Donnat, J. Mast, A. Lugari, B. Werle, Vaccine 2018, 36, 3622 - 3628; L. Adamson, N. Tasneem, M.- P. Andreas, W. Close, T.- N. Szyszka, E. Jenner, R. Young, L.- C. Cheah, A. Norman, F. Sainsbury, T.- W. Giessen, Y.- H. Lau, BioRxiv 2021.
dc.identifier.citedreferenceE. M. Williams, S. M. Jung, J. L. Coffman, S. Lutz, ACS Synth. Biol. 2018, 7, 2514 - 2517.
dc.identifier.citedreferenceM. P. Andreas, T. W. Giessen, Nat. Commun. 2021, 12, 4748.
dc.identifier.citedreferenceK.- A. Lien, R.- J. Nichols, C. Cassidy-Amstutz, K. Dinshaw, M. Knight, R. Singh, L.- D. Eltis, D.- F. Savage, S.- A. Stanley, BioRxiv 2020, 2020.2008.2031.276014; C. A. McHugh, J. Fontana, D. Nemecek, N. Cheng, A. A. Aksyuk, J. B. Heymann, D. C. Winkler, A. S. Lam, J. S. Wall, A. C. Steven, E. Hoiczyk, EMBO J. 2014, 33, 1896 - 1911.
dc.identifier.citedreferenceT. W. Giessen, P. A. Silver, Nat. Microbiol. 2017, 2, 17029.
dc.identifier.citedreferenceH. Contreras, M. S. Joens, L. M. McMath, V. P. Le, M. V. Tullius, J. M. Kimmey, N. Bionghi, M. A. Horwitz, J. A. Fitzpatrick, C. W. Goulding, J. Biol. Chem. 2014, 289, 18279 - 18289.
dc.identifier.citedreferenceD. He, C. Piergentili, J. Ross, E. Tarrant, L. R. Tuck, C. L. Mackay, Z. McIver, K. J. Waldron, D. J. Clarke, J. Marles-Wright, Biochem. J. 2019, 476, 975 - 989.
dc.identifier.citedreferenceT. W. Giessen, B. J. Orlando, A. A. Verdegaal, M. G. Chambers, J. Gardener, D. C. Bell, G. Birrane, M. Liao, P. A. Silver, eLife 2019, 8, e46070.
dc.identifier.citedreferenceR. J. Nichols, B. LaFrance, N. R. Phillips, D. R. Radford, L. M. Oltrogge, L. E. Valentin-Alvarado, A. J. Bischoff, E. Nogales, D. F. Savage, eLife 2021, 10, e59288.
dc.identifier.citedreferenceF. Akita, K. T. Chong, H. Tanaka, E. Yamashita, N. Miyazaki, Y. Nakaishi, M. Suzuki, K. Namba, Y. Ono, T. Tsukihara, A. Nakagawa, J. Mol. Biol. 2007, 368, 1469 - 1483; W. J. Altenburg, N. Rollins, P. A. Silver, T. W. Giessen, Sci. Rep. 2021, 11, 4951; J. Snijder, O. Kononova, I. M. Barbu, C. Uetrecht, W. F. Rurup, R. J. Burnley, M. S. Koay, J. J. Cornelissen, W. H. Roos, V. Barsegov, G. J. Wuite, A. J. Heck, Biomacromolecules 2016, 17, 2522 - 2529.
dc.identifier.citedreferenceD. Kamiyama, S. Sekine, B. Barsi-Rhyne, J. Hu, B. Chen, L. A. Gilbert, H. Ishikawa, M. D. Leonetti, W. F. Marshall, J. S. Weissman, B. Huang, Nat. Commun. 2016, 7, 11046; H. Moon, J. Lee, J. Min, S. Kang, Biomacromolecules 2014, 15, 3794 - 3801.
dc.identifier.citedreferenceT. Panavas, C. Sanders, T. R. Butt, Methods Mol. Biol. 2009, 497, 303 - 317.
dc.identifier.citedreferenceK. Ozawa, H. Iwasa, N. Sasaki, N. Kinoshita, A. Hiratsuka, K. Yokoyama, Appl. Microbiol. Biotechnol. 2017, 101, 173 - 183.
dc.identifier.citedreferenceC. Kato, E. Kawai, N. Shimizu, T. Mikekado, F. Kimura, T. Miyazawa, K. Nakagawa, PLoS One 2018, 13, e0209700.
dc.identifier.citedreferenceS. Y. Lee, J. Lee, J. H. Chang, J. H. Lee, BMB Rep. 2011, 44, 77 - 86.
dc.identifier.citedreferenceP. C. Jordan, D. P. Patterson, K. N. Saboda, E. J. Edwards, H. M. Miettinen, G. Basu, M. C. Thielges, T. Douglas, Nat. Chem. 2016, 8, 179 - 185.
dc.identifier.citedreferenceZ. Zhao, J. Fu, S. Dhakal, A. Johnson-Buck, M. Liu, T. Zhang, N. W. Woodbury, Y. Liu, N. G. Walter, H. Yan, Nat. Commun. 2016, 7, 10619.
dc.identifier.citedreferenceT. G. W. Edwardson, S. Tetter, D. Hilvert, Nat. Commun. 2020, 11, 5410; T. G. W. Edwardson, T. Mori, D. Hilvert, J. Am. Chem. Soc. 2018, 140, 10439 - 10442.
dc.identifier.citedreferenceT. W. Giessen, P. A. Silver, ACS Synth. Biol. 2016, 5, 1497 - 1504.
dc.identifier.citedreferenceJ. C. Tracey, M. Coronado, T. W. Giessen, M. C. Y. Lau, P. A. Silver, B. B. Ward, Sci. Rep. 2019, 9, 20122; R. M. Putri, C. Allende-Ballestero, D. Luque, R. Klem, K. A. Rousou, A. Liu, C. H. Traulsen, W. F. Rurup, M. S. T. Koay, J. R. Castón, J. J. L. M. Cornelissen, ACS Nano 2017, 11, 12796 - 12804.
dc.identifier.citedreferenceR. K. Huang, R. Khayat, K. K. Lee, I. Gertsman, R. L. Duda, R. W. Hendrix, J. E. Johnson, J. Mol. Biol. 2011, 408, 541 - 554; R. Rahmanpour, T. D. Bugg, FEBS J. 2013, 280, 2097 - 2104.
dc.identifier.citedreferenceZ. Xie, R. W. Hendrix, J. Mol. Biol. 1995, 253, 74 - 85.
dc.identifier.citedreferenceA. Kim, F. C. Szoka, Pharm. Res. 1992, 9, 504 - 514.
dc.identifier.citedreferenceJ. A. Jones, T. W. Giessen, Biotechnol. Bioeng. 2020, 1, 491 - 505.
dc.identifier.citedreferenceW. Li, F. Nicol, F. C. Szoka, Adv. Drug Delivery Rev. 2004, 56, 967 - 985.
dc.identifier.citedreferenceY. H. Lau, T. W. Giessen, W. J. Altenburg, P. A. Silver, Nat. Commun. 2018, 9, 1311; M. C. Jenkins, S. Lutz, ACS Synth. Biol. 2021, 10, 857 - 869.
dc.identifier.citedreferenceF. Sigmund, C. Massner, P. Erdmann, A. Stelzl, H. Rolbieski, M. Desai, S. Bricault, T. P. Wörner, J. Snijder, A. Geerlof, H. Fuchs, M. HrabeÌ de Angelis, A. J. R. Heck, A. Jasanoff, V. Ntziachristos, J. Plitzko, G. G. Westmeyer, Nat. Commun. 2018, 9, 1990.
dc.identifier.citedreferenceD. J. Tso, R. W. Hendrix, R. L. Duda, J. Mol. Biol. 2014, 426, 2112 - 2129.
dc.identifier.citedreferenceM. Künzle, J. Mangler, M. Lach, T. Beck, Nanoscale 2018, 10, 22917 - 22926.
dc.identifier.citedreferenceM. M. Suhanovsky, C. M. Teschke, Virology 2015, 479- 480, 487 - 497.
dc.identifier.citedreferenceE. Cornejo, N. Abreu, A. Komeili, Curr. Opin. Cell Biol. 2014, 26, 132 - 138; Y. Diekmann, J. B. Pereira-Leal, Biochem. J. 2013, 449, 319 - 331.
dc.identifier.citedreferenceY. Azuma, T. G. W. Edwardson, D. Hilvert, Chem. Soc. Rev. 2018, 47, 3543 - 3557; M. Khoshnejad, H. Parhiz, V. V. Shuvaev, I. J. Dmochowski, V. R. Muzykantov, J. Controlled Release 2018, 282, 13 - 24; Y. Ma, R. J. Nolte, J. J. Cornelissen, Adv. Drug Delivery Rev. 2012, 64, 811 - 825; W. F. Rurup, J. Snijder, M. S. Koay, A. J. Heck, J. J. Cornelissen, J. Am. Chem. Soc. 2014, 136, 3828 - 3832; Y. Azuma, M. Herger, D. Hilvert, J. Am. Chem. Soc. 2018, 140, 558 - 561; T. G. W. Edwardson, D. Hilvert, J. Am. Chem. Soc. 2019, 141, 9432 - 9443; E. Sasaki, D. Böhringer, M. van de Waterbeemd, M. Leibundgut, R. Zschoche, A. J. Heck, N. Ban, D. Hilvert, Nat. Commun. 2017, 8, 14663.
dc.identifier.citedreferenceS. Tetter, D. Hilvert, Angew. Chem. Int. Ed. 2017, 56, 14933 - 14936; Angew. Chem. 2017, 129, 15129 - 15132.
dc.identifier.citedreferenceR. Zschoche, D. Hilvert, J. Am. Chem. Soc. 2015, 137, 16121 - 16132.
dc.identifier.citedreferenceA. D. Malay, N. Miyazaki, A. Biela, S. Chakraborti, K. Majsterkiewicz, I. Stupka, C. S. Kaplan, A. Kowalczyk, B. M. A. G. Piette, G. K. A. Hochberg, D. Wu, T. P. Wrobel, A. Fineberg, M. S. Kushwah, M. Kelemen, P. VavpetiÄ , P. Pelicon, P. Kukura, J. L. P. Benesch, K. Iwasaki, J. G. Heddle, Nature 2019, 569, 438 - 442; E. Golub, R. H. Subramanian, J. Esselborn, R. G. Alberstein, J. B. Bailey, J. A. Chiong, X. Yan, T. Booth, T. S. Baker, F. A. Tezcan, Nature 2020, 578, 172 - 176.
dc.identifier.citedreferenceS. H. Choi, K. Choi, I. Chan Kwon, H. J. Ahn, Biomaterials 2010, 31, 5191 - 5198.
dc.identifier.citedreferenceY. Li, J. F. Conway, N. Cheng, A. C. Steven, R. W. Hendrix, R. L. Duda, J. Mol. Biol. 2005, 348, 167 - 182.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.