Show simple item record

Comparison of the United Kingdom and United States approaches to approval of new neuromuscular therapies

dc.contributor.authorGallagher, Gary W.
dc.contributor.authorNowacek, Dustin
dc.contributor.authorGutgsell, Olivia
dc.contributor.authorCallaghan, Brian C.
dc.date.accessioned2021-12-02T02:29:39Z
dc.date.available2023-01-01 21:29:37en
dc.date.available2021-12-02T02:29:39Z
dc.date.issued2021-12
dc.identifier.citationGallagher, Gary W.; Nowacek, Dustin; Gutgsell, Olivia; Callaghan, Brian C. (2021). "Comparison of the United Kingdom and United States approaches to approval of new neuromuscular therapies." Muscle & Nerve 64(6): 641-650.
dc.identifier.issn0148-639X
dc.identifier.issn1097-4598
dc.identifier.urihttps://hdl.handle.net/2027.42/170985
dc.description.abstractMany novel therapies are now available for rare neuromuscular conditions that were previously untreatable. Hereditary transthyretin amyloidosis and spinal muscular atrophy are two examples of diseases with new medications that have transformed our field. The United States and the United Kingdom have taken disparate approaches to the approval and coverage of medications, despite both providing incentives to develop therapies targeting rare diseases. The US requires less evidence for approval when compared with medications for common diseases and does not have a mechanism to ensure or even encourage cost‐effectiveness. The Institute of Clinical and Economic Review provides in‐depth cost‐effectiveness analyses in the US, but does not have the authority to negotiate drug costs. In contrast, the UK has maintained a similar scientific threshold for approval of all therapies, while requiring negotiation with National Institute for Health and Care Excellence to ensure that medications are cost‐effective for rare diseases. These differences have led to approval of medications for rare diseases in the US that have less evidence than required for common diseases. Importantly, these medications have not been approved in the UK. Even when medications meet traditional scientific thresholds, they uniformly arrive with high list prices in the US, whereas they are available at cost‐effective prices in the UK. The main downsides to the UK approach are that cost‐effective medications are often available months later than in the US, and some medications remain unavailable.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherorphan drugs
dc.subject.otherrare disease
dc.subject.otherneuromuscular disease
dc.subject.othercost‐effective
dc.titleComparison of the United Kingdom and United States approaches to approval of new neuromuscular therapies
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170985/1/mus27380_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170985/2/mus27380.pdf
dc.identifier.doi10.1002/mus.27380
dc.identifier.sourceMuscle & Nerve
dc.identifier.citedreferenceTakahashi F, Takei K, Tsuda K, Palumbo J. Post‐hoc analysis of MCI186‐17, the extension study to MCI186‐16, the confirmatory double‐blind, parallel‐group, placebo‐controlled study of edaravone in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2017; 18 ( suppl 1 ): 32 ‐ 39.
dc.identifier.citedreferenceFDA approves drug to treat ALS [news release]. US Food & Drug Administration website. May 15, 2017. https://www.fda.gov/news-events/press-announcements/fda-approves-drug-treat-als. Accessed January 2021.
dc.identifier.citedreferenceMiller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2002; 2: CD001447.
dc.identifier.citedreferenceNHS Specialist Pharmacy Service. Edaravone. National Health Services website. August 30, 2016, Updated May 1, 2020. https://www.sps.nhs.uk/medicines/edaravone. Accessed January 2021.
dc.identifier.citedreferenceRadicava: withdrawal of the marketing authorization application. European Medicines Agency website. May 29, 2019. https://www.ema.europa.eu/en/medicines/human/withdrawn-applications/radicava. Accessed January 2021.
dc.identifier.citedreferenceYeo CJJ, Simmons Z. Discussing edaravone with the ALS patient: an ethical framework from a U.S. perspective. Amyotroph Lateral Scler Frontotemporal Degener. 2018; 19: 167 ‐ 172.
dc.identifier.citedreferenceSilvestri NJ, Wolfe GI. Treatment‐refractory myasthenia gravis. J Clin Neuromuscul Dis. 2014; 15: 167 ‐ 178.
dc.identifier.citedreferenceHoward JF Jr, Utsugisawa K, Benatar M, et al. Safety and efficacy of eculizumab in anti‐acetylcholine receptor antibody‐positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double‐blind, placebo‐controlled, multicentre study. Lancet Neurol. 2017; 16: 976 ‐ 986.
dc.identifier.citedreferenceMuppidi S, Utsugisawa K, Benatar M, Murai H, Barohn R, Illa I. Long‐term safety and efficacy of eculizumab in generalized myasthenia gravis. Muscle Nerve. 2019; 60: 14 ‐ 24.
dc.identifier.citedreferenceThe world’s most expensive drugs. Forbes. February 22, 2010. https://www.forbes.com/2010/02/19/expensive-drugs-cost-business-healthcare-rare-diseases.html?sh=6e8e88745e10. Accessed January 2021.
dc.identifier.citedreferenceCHMP extension of indication variation assessment report. European Medicines Agency website. August 1, 2017. https://www.ema.europa.eu/en/documents/variation-report/soliris-h-c-791-ii-0090-epar-assessment-report-variation_en.pdf. Accessed January 2021.
dc.identifier.citedreferenceEculizumab for treating refractory myasthenia gravis (terminated appraisal). National Institute for Health and Care Excellence website. June 30, 2020. https://www.nice.org.uk/guidance/ta636. Accessed January 2021.
dc.identifier.citedreferenceSanders DB, Massey JM, Sander LL, Edwards LJ. A randomized trial of 3,4‐diaminopyridine in Lambert‐Eaton myasthenic syndrome. Neurology. 2000; 54: 603 ‐ 607.
dc.identifier.citedreferenceWirtz PW, Verschuuren JJ, van Dijk JG, et al. Efficacy of 3,4‐diaminopyridine and pyridostimine in the treatment of Lambert‐Eaton myasthenic syndrome: a randomized, double‐blind, placebo‐controlled, cross study. Clin Pharmcol Ther. 2009; 86: 44 ‐ 48.
dc.identifier.citedreferenceOh SJ, Claussen GG, Hatanaka Y, Morgan MB. 3,4‐Diaminopyridine is more effective than placebo in a randomized, double‐blind, cross‐over drug study in LEMS. Muscle Nerve. 2018; 57: 561 ‐ 568.
dc.identifier.citedreferenceKeogh M, Sedehizaden S, Maddison P, Cochrane Neuromuscular Group. Treatment for Lambert‐Eaton myasthenic syndrome. Cochrane Database Syst Rev. 2011; 2: CD003279.
dc.identifier.citedreferenceShieh P, Sharma K, Kohrman B, Oh SJ. Amifampridine phosphate (Firdapse) is effective in a confirmatory phase 3 clinical trial in LEMS. J Clin Neuromuscul Dis. 2019; 20: 111 ‐ 119.
dc.identifier.citedreferenceOh SJ, Shcherbakova N, Kostera‐Pruszczyk A, et al. Amifampridine phosphate (Firdapse®) is effective and safe in a phase 3 clinical trial in LEMS. Muscle Nerve. 2016; 53: 717 ‐ 725.
dc.identifier.citedreferenceApproval package for Firdapse. US Food & Drug Administration website. November 18, 2018. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/208078orig1s000approv.pdf. Accessed January 2021.
dc.identifier.citedreferenceBurns TM, Smith GA, Allen JA, et al. Editorial by concerned physicians: unintended effect of the orphan drug act on the potential cost of 3,4‐diaminopyridine. Muscle Nerve. 2016; 53: 165 ‐ 168.
dc.identifier.citedreferenceFirdapse (previously Zenas). European Medicines Agency website. December 23, 2009. https://www.ema.europa.eu/en/medicines/human/EPAR/firdapse#authorisation-details-section. Accessed January 2021.
dc.identifier.citedreferenceClinical commissioning policy: amifampridine phosphate for the treatment of Lambert‐Easton myasthenic syndrome. National Health Service website. July 13, 2016. https://www.england.nhs.uk/commissioning/wp-content/uploads/sites/12/2016/07/16009_final.pdf. Accessed January 2021.
dc.identifier.citedreferenceApproval package for Rizurgi. US Food & Drug Administration website. May 6, 2019. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/209321orig1s000approv.pdf. Accessed January 2021.
dc.identifier.citedreferenceUS Code of Federal Regulations. Title 21 Food and Drugs, Part 316, Orphan Drugs Public Law 97‐414, HR 5238, January 4, 1983.
dc.identifier.citedreferenceEuropean Parliament and Council of the European Union. Regulation EC (No 141/2000) of the European Parliament and the Council of December 16, 1999 on orphan medicinal products. Off J Eur Commun. January 21, 2000.
dc.identifier.citedreferencePomeranz K, Siriwardana K, Davies F. EvaluatePharma: Orphan drug report 2020. https://wwwevaluatecom/orphan-drugs. Accessed January 2021.
dc.identifier.citedreferenceNguengang Wakap S, Lambert DM, Olry A, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet. 2020; 28: 165 ‐ 173.
dc.identifier.citedreferenceHall AK, Carlson MR. The current status of orphan drug development in Europe and the US. Intractable Rare Dis Res. 2014; 3: 1 ‐ 7.
dc.identifier.citedreferenceOrphan drug designation list. Health Resources & Services Administration website. https://www.hrsa.gov/opa/program-requirements/orphan-drug-exclusion/index.html. Accessed January 2021.
dc.identifier.citedreferenceFood & Drug Administration Safety and Innovation Act. Amendment to the Federal Food Drug Cosmetic Act Public Law 112–114, July 9, 2012. https://www.congress.gov/112/plaws/publ144/plaw-112publ144.pdf. Accessed January 2021.
dc.identifier.citedreferenceDarrow JJ, Avorn J, Kesselheim AS. FDA approval and regulation of pharmaceuticals, 1983‐2018. JAMA. 2020; 323: 164 ‐ 176.
dc.identifier.citedreferenceBeaver JA, Howie LJ, Pelosof L, et al. A 25‐year experience of US Food & Drug Administration accelerated approval of malignant hematology and oncology drugs and biologics: a review. JAMA Oncol. 2018; 4: 849 ‐ 856.
dc.identifier.citedreferenceDaniel MG, Pawlik TM, Fader AN, Esnaola NF, Makary MA. The Orphan Drug Act: restoring the mission to rare diseases. Am J Clin Oncol. 2016; 39: 210 ‐ 213.
dc.identifier.citedreferenceRidic G, Gleason S, Ridic O. Comparisons of health care systems in the United States, Germany and Canada. Mater Sociomed. 2012; 24: 112 ‐ 120.
dc.identifier.citedreferenceWeinstein MC, Torrance G, McGuire A. QALYs: the basics [published correction appears in Value Health 2010;13(8):1065]. Value Health. 2009; 12 ( suppl 1 ): S5 ‐ S9.
dc.identifier.citedreferenceInstitute for Clinical and Economic Review 2020‐2023. Value assessment framework. Institute of Clinical and Economic Review website. January 31. 2020. https://icer-revieworg/wp-content/uploads/2020/10/icer_2020_2023_vaf_102220pdf. Accessed January 2021.
dc.identifier.citedreferencePearson I, Rothwell B, Olaye A, Knight C. Economic modeling considerations for rare diseases. Value Health. 2018; 21: 515 ‐ 524.
dc.identifier.citedreferenceOllendorf DA, Chapman RH, Pearson SD. Evaluating and valuing drugs for rare conditions: no easy answers. Value Health. 2018; 21: 547 ‐ 552.
dc.identifier.citedreferenceGoring S, Taylor A, Müller K, et al. Characteristics of non‐randomised studies using comparisons with external controls submitted for regulatory approval in the USA and Europe: a systematic review. BMJ Open. 2019; 9: 2.
dc.identifier.citedreferenceHatswell AJ, Baio G, Berlin JA, Irs A, Freemantle N. Regulatory approval of pharmaceuticals without a randomised controlled study: analysis of EMA and FDA approvals 1999‐2014. BMJ Open. 2016; 6: e011666.
dc.identifier.citedreferenceChanges to NICE drug appraisals: what you need to know. National Institute for Health and Care Excellence website. April 4, 2017. https://www.nice.org.uk/news/feature/changes-to-nice-drug-appraisals-what-you-need-to-know Accessed January 2021.
dc.identifier.citedreferenceAdams D, Gonzalez‐Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018; 379: 11 ‐ 21.
dc.identifier.citedreferenceBenson MD, Waddington‐Cruz M, Berk JL, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018; 379: 22 ‐ 31.
dc.identifier.citedreferenceGorevic P, Franklin J, Chen J, Sajeev G, Wang JCH, Lin H. Indirect treatment comparison of the efficacy of patisiran and inotersen for hereditary transthyretin‐mediated amyloidosis with polyneuropathy. Expert Opin Pharmacother. 2020; 7: 1 ‐ 9.
dc.identifier.citedreferenceFDA approves first‐of‐its kind targeted RNA‐based therapy to treat a rare disease. US Food & Drug Administration website. https://www.fda.gov/news-events/press-announcements/fda-approves-first-its-kind-targeted-rna-based-therapy-treat-rare-disease. Accessed January 2021.
dc.identifier.citedreferenceTegsedi (inotersen sodium)—2018 FDA approval. https://www.rjhealth.com/2018/10/29/tegsedi-inotersen-sodium-2018-fda-approval. Accessed January 2021.
dc.identifier.citedreferenceInotersen and patisiran for hereditary transthyretin amyloidosis: effectiveness and value. Final evidence report. Institute of Clinical and Economic Review website. October 4, 2018. http://icerorg.wpengine.com/wp-content/uploads/2020/10/icer_amyloidosis_final_evidence_report_101718.pdf. Accessed January 2021.
dc.identifier.citedreferenceEMA approval of Onpattro (patisiran). European Medicines Agency website. https://www.ema.europa.eu/en/medicines/human/epar/onpattro. Accessed January 2021
dc.identifier.citedreferenceEMA approval of Tegsedi (inotersen). European Medicines Agency website. https://www.ema.europa.eu/en/medicines/human/epar/tegsedi. Accessed January 2021.
dc.identifier.citedreferenceEvaluation consultation document Patisiran for treating hereditary transthyretin‐related amyloidosis. National Institute for Health and Care Excellence website. December 2018. https://www.nice.org.uk/guidance/hst10/documents/evaluation-consultation-document. Accessed January 2021.
dc.identifier.citedreferenceEvaluation consultation document Inotersen for treating hereditary transthyretin‐related amyloidosis. National Institute for Health and Care Excellence website. December 2018. https://www.nice.org.uk/guidance/hst9/documents/evaluation-consultation-document. Accessed January 2021
dc.identifier.citedreferenceHighly specialised technologies guidance. Patisiran for treating hereditary transthyretin amyloidosis. National Institute for Health and Care Excellence website. August 14, 2019. https://www.nice.org.uk/guidance/hst10/resources/patisiran-for-treating-hereditary-transthyretin-amyloidosis-pdf-50216252129989. Accessed January 2021.
dc.identifier.citedreferenceHighly specialised technologies guidance. Inotersen for treating hereditary transthyretin amyloidosis. National Institute for Health and Care Excellence website. May 22, 2019. https://www.nice.org.uk/guidance/hst9/resources/inotersen-for-treating-hereditary-transthyretin-amyloidosis-pdf-1394909285317. Accessed January 2021.
dc.identifier.citedreferenceSpinraza and Zolgensma for spinal muscular atrophy: effectiveness and value. Institute of Clinical and Economic Review website. http://icerorg.wpengine.com/wp-content/uploads/2020/10/icer_sma_final_evidence_report_110220.pdf. Accessed January 2021.
dc.identifier.citedreferenceNusinersen for treating spinal muscular atrophy: technology appraisal guidance. National Institute for Health and Care Excellence website. https://www.nice.org.uk/guidance/ta588/resources/nusinersen-for-treating-spinal-muscular-atrophy-pdf-82607209989829. Accessed January 2021.
dc.identifier.citedreferenceDeflazacort, eteplirsen, and golodirsen for Duchenne muscular dystrophy: effectiveness and value. Institute of Clinical and Economic Review. Institute of Clinical and Economic Review website. http://icerorg.wpengine.com/wp-content/uploads/2020/10/icer_dmd-final-report_081519-2.pdf. Accessed January 2021.
dc.identifier.citedreferenceCanadian Agency for Drugs and Technologies in Health Common drug review. Pharmacoeconomic review report: Edaravone (Radicava) (Mitsubishi Tanabe Pharma Corporation): Indication: For the treatment of amyotrophic lateral sclerosis (ALS). April 2019. https://www.ncbi.nlm.nih.gov/books/NBK542529. Accessed January 2021.
dc.identifier.citedreferenceCanadian Agency for Drugs and Technologies in Health. Pharmacoeconomic report: Eculizumab (Soliris) (Alexion Pharma Canada Corporation): Indication: Adult patients with generalized myasthenia gravis. December 2020. https://www.ncbi.nlm.nih.gov/books/NBK567285. Accessed May 2021.
dc.identifier.citedreferenceKolb SJ, Coffey CS, Yankey JW, et al. Natural history of infantile‐onset spinal muscular atrophy. Ann Neurol. 2017; 82: 883 ‐ 891.
dc.identifier.citedreferenceFinkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile‐onset spinal muscular atrophy. N Engl J Med. 2017; 377: 1723 ‐ 1732.
dc.identifier.citedreferenceMercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus sham control in later‐onset spinal muscular atrophy. N Engl J Med. 2018; 378: 625 ‐ 635.
dc.identifier.citedreferenceMendell JR, Al‐Zaidy S, Shell R, et al. Single‐dose gene‐replacement therapy for spinal muscular atrophy. N Engl J Med. 2017; 377: 1713 ‐ 1722.
dc.identifier.citedreferenceFinkel RS, McDermott MP, Kaufmann P, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology. 2014; 83: 810 ‐ 817.
dc.identifier.citedreferenceMercuri E, Barisic N, Boespflug‐Tanguy O, et al. SUNFISH part 2: Efficacy and safety of risdiplam (RG7916) in patients with type 2 or non‐ambulant type 3 spinal muscular atrophy (SMA) presented at the American Academy of Neurology Conference 2020. Neurology. 2020; 94: 1260.
dc.identifier.citedreferenceServais L, Baranello G, Masson R, et al. FIREFISH part 2: Efficacy and safety of Risdiplam (RG7916) in infants with type 1 spinal muscular atrophy (SMA). Presented at the American Academy of Neurology Conference 2020. Neurology. 2020; 94: 1302.
dc.identifier.citedreferenceBaranello G, Servais L, Day JW, et al. FIREFISH part 1: 16‐month safety and exploratory outcomes of risdiplam (RG7916) treatment in infants with type 1 spinal muscular atrophy (SMA). Presented at the World Muscle Society Conference 2019. Neuromuscul Disord. 2019; 29 ( S(184) ): 184.
dc.identifier.citedreferenceFDA approves first drug for spinal muscular atrophy [news release]. https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-spinal-muscular-atrophy. Accessed January 2021.
dc.identifier.citedreferenceFDA approves innovative gene therapy to treat pediatric patients with spinal muscular atrophy, a rare disease and leading genetic cause of infant mortality [news release]. https://www.fda.gov/news-events/press-announcements/fda-approves-innovative-gene-therapy-treat-pediatric-patients-spinal-muscular-atrophy-rare-disease. Accessed January 2021.
dc.identifier.citedreferenceFDA approves oral treatment for spinal muscular atrophy [news release]. https://www.fda.gov/news-events/press-announcements/fda-approves-oral-treatment-spinal-muscular-atrophy. Accessed January 2021.
dc.identifier.citedreferenceEuropean Medicines Agency. EPAR summary for the public: Spinraza. https://www.ema.europa.eu/en/documents/overview/spinraza-epar-summary-public_en.pdf. Accessed January 2021.
dc.identifier.citedreferenceEuropean Medicines Agency. Zolgensma. https://www.ema.europa.eu/en/medicines/human/epar/zolgensma#overview-section. Accessed January 2021.
dc.identifier.citedreferenceEuropean Medicines Agency. EU/3/19/215 (Risdiplam). https://www.ema.europa.eu/en/medicines/human/orphan-designations/eu3192145. Accessed January 2021.
dc.identifier.citedreferenceOnasemnogene abeparvovec for treating spinal muscular atrophy type 1. https://www.nice.org.uk/guidance/indevelopment/gid-hst10026. Accessed January 2021.
dc.identifier.citedreferenceOnasemnogene abeparvovec for treating spinal muscular atrophy. https://www.nice.org.uk/guidance/hst15. Accessed August 2021
dc.identifier.citedreferenceYiu EM, Kornberg AJ. Duchenne muscular dystrophy. J Paediatr Child Health. 2015; 51: 759 ‐ 764.
dc.identifier.citedreferenceMoxley RT 3rd, Ashwal S, Pandya S, et al. Practice parameter: corticosteroid treatment of Duchenne dystrophy: report of the quality standards Subcommittee of the American Academy of neurology and the practice Committee of the Child Neurology Society. Neurology. 2005; 64: 13 ‐ 20.
dc.identifier.citedreferenceGriggs RC, Miller JP, Greenberg CR, et al. Efficacy and safety of deflazacort vs prednisone and placebo for Duchenne muscular dystrophy. Neurology. 2016; 87: 2123 ‐ 2131.
dc.identifier.citedreferenceIversen PL. Phosphorodiamidate morpholino oligomers: favorable properties for sequence‐specific gene inactivation. Curr Opin Mol Ther. 2001; 3: 235 ‐ 238.
dc.identifier.citedreferenceHoffman EP, Bronson A, Levin AA, et al. Restoring dystrophin expression in duchenne muscular dystrophy muscle progress in exon skipping and stop codon read through. Am J Pathol. 2011; 179: 12 ‐ 22.
dc.identifier.citedreferenceCirak S, Arechavala‐Gomeza V, Guglieri M, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open‐label, phase 2, dose‐escalation study. Lancet. 2011; 378: 595 ‐ 605.
dc.identifier.citedreferenceMendell JR, Rodino‐Klapac LR, Sahenk Z, et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol. 2013; 74: 637 ‐ 647.
dc.identifier.citedreferenceMcDonald CM, Henricson EK, Abresch RT, et al. The 6‐min walk test and other endpoints in Duchenne muscular dystrophy: longitudinal natural history observations over 48 weeks from a multicenter study. Muscle Nerve. 2013; 48: 343 ‐ 356.
dc.identifier.citedreferenceFrank DE, Schnell FJ, Akana C, et al. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy. Neurology. 2020; 94: e2270 ‐ e2282.
dc.identifier.citedreferenceClemens PR, Rao VK, Connolly AM, et al. Safety, tolerability, and efficacy of Viltolarsen in boys with Duchenne muscular dystrophy amenable to exon 53 skipping: a phase 2 randomized clinical trial. JAMA Neurol. 2020; 77: 982 ‐ 991.
dc.identifier.citedreferenceFDA approves drug to treat Duchenne muscular dystrophy. US Food & Drug Administration website. https://www.fda.gov/news-events/press-announcements/fda-approves-drug-treat-duchenne-muscular-dystrophy. Accessed January 2021.
dc.identifier.citedreferenceFDA grants accelerated approval to first drug for Duchenne muscular dystrophy. US Food & Drug Administration website. www.fda.gov/newsevents/newsroom/pressannouncements/ucm521263.htm. Accessed January 2021.
dc.identifier.citedreferenceFDA grants accelerated approval to first targeted treatment for rare Duchenne muscular dystrophy mutation. US Food & Drug Administration website. https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-first-targeted-treatment-rare-duchenne-muscular-dystrophy-mutation. Accessed January 2021.
dc.identifier.citedreferenceFDA approves targeted treatment for rare Duchenne muscular dystrophy mutation. US Food & Drug Administration website. https://www.fda.gov/news-events/press-announcements/fda-approves-targeted-treatment-rare-duchenne-muscular-dystrophy-mutation. Accessed January 2021.
dc.identifier.citedreferenceExondys. European Medicines Agency website. https://www.ema.europa.eu/en/medicines/human/EPAR/exondys. Accessed January 2021.
dc.identifier.citedreferenceThe Edaravone Acute Brain Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI‐186), on acute brain infarction. Randomized, placebo‐controlled, double‐blind study at multicenters. Cerebrovasc Dis. 2003; 15: 222 ‐ 229.
dc.identifier.citedreferenceAbe K, Itoyama Y, Sobue G, et al. Confirmatory double‐blind, parallel‐group, placebo‐controlled study of efficacy and safety of edaravone (MCI‐186) in amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener. 2014; 15: 610 ‐ 617.
dc.identifier.citedreferenceWriting Group; Edaravone (MCI‐186) ALS 19 Study Group. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double‐blind, placebo‐controlled trial. Lancet Neurol. 2017; 16: 505 ‐ 512.
dc.identifier.citedreferenceTurnbull J. Is edaravone harmful? (A placebo is not a control). Amyotroph Lateral Scler Frontotemporal Degener. 2018; 19: 477 ‐ 482.
dc.identifier.citedreferenceAbraham A, Nefussy B, Fainmesser Y, Ebrahimi Y, Karni A, Drory VE. Early post‐marketing experience with edaravone in an unselected group of patients with ALS. Amyotroph Lateral Scler Frontotemporal Degener. 2019; 20: 260 ‐ 263.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.