Show simple item record

Feasibility of function‐guided lung treatment planning with parametric response mapping

dc.contributor.authorMatrosic, Charles K.
dc.contributor.authorOwen, D. Rocky
dc.contributor.authorPolan, Daniel
dc.contributor.authorSun, Yilun
dc.contributor.authorJolly, Shruti
dc.contributor.authorSchonewolf, Caitlin
dc.contributor.authorSchipper, Matthew
dc.contributor.authorHaken, Randall K. Ten
dc.contributor.authorGalban, Craig J.
dc.contributor.authorMatuszak, Martha
dc.date.accessioned2021-12-02T02:29:58Z
dc.date.available2022-12-01 21:29:57en
dc.date.available2021-12-02T02:29:58Z
dc.date.issued2021-11
dc.identifier.citationMatrosic, Charles K.; Owen, D. Rocky; Polan, Daniel; Sun, Yilun; Jolly, Shruti; Schonewolf, Caitlin; Schipper, Matthew; Haken, Randall K. Ten; Galban, Craig J.; Matuszak, Martha (2021). "Feasibility of function‐guided lung treatment planning with parametric response mapping." Journal of Applied Clinical Medical Physics 22(11): 80-89.
dc.identifier.issn1526-9914
dc.identifier.issn1526-9914
dc.identifier.urihttps://hdl.handle.net/2027.42/170991
dc.description.abstractPurposeRecent advancements in functional lung imaging have been developed to improve clinicians’ knowledge of patient pulmonary condition prior to treatment. Ultimately, it may be possible to employ these functional imaging modalities to tailor radiation treatment plans to optimize patient outcome and mitigate pulmonary complications. Parametric response mapping (PRM) is a computed tomography (CT)–based functional lung imaging method that utilizes a voxel‐wise image analysis technique to classify lung abnormality phenotypes, and has previously been shown to be effective at assessing lung complication risk in diagnostic applications. The purpose of this work was to demonstrate the implementation of PRM guidance in radiotherapy treatment planning.Methods and materialsA retrospective study was performed with 18 lung cancer patients to test the incorporation of PRM into a radiotherapy planning workflow. Paired inspiration/expiration pretreatment CT scans were acquired and PRM analysis was utilized to classify each voxel as normal, parenchymal disease, small airway disease, and emphysema. Density maps were generated for each PRM classification to contour high density regions of pulmonary abnormalities. Conventional volumetric‐modulated arc therapy and PRM‐guided treatment plans were designed for each patient.ResultsPRM guidance was successfully implemented into the treatment planning process. The inclusion of PRM priorities resulted in statistically significant (p < 0.05) improvements to the V20Gy within the PRM avoidance contours. On average, reductions of 5.4% in the V20Gy(%) were found. The PRM‐guided treatment plans did not significantly increase the dose to the organs at risk or result in insufficient planning target volume coverage, but did increase plan complexity.ConclusionsPRM guidance was successfully implemented into a treatment planning workflow and shown to be effective for dose redistribution within the lung. This work has provided a framework for the potential clinical implementation of PRM‐guided treatment planning.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlung cancer
dc.subject.othertreatment planning
dc.subject.otherfunctional imaging
dc.titleFeasibility of function‐guided lung treatment planning with parametric response mapping
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170991/1/acm213436.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170991/2/acm213436_am.pdf
dc.identifier.doi10.1002/acm2.13436
dc.identifier.sourceJournal of Applied Clinical Medical Physics
dc.identifier.citedreferenceCastillo E, Castillo R, Martinez J, Shenoy M, Guerrero T. Four‐dimensional deformable image registration using trajectory modeling. Phys Med Biol. 2009; 55 ( 1 ): 305.
dc.identifier.citedreferenceOwen D, Sun Y, McFarlane M, et al. Investigating the perfusion SPECT dose‐function metrics associated with RILT risk in NSCLC patients undergoing RT. Int J Radiat Oncol Biol Phys. 2020; 108 ( 3 ): e278.
dc.identifier.citedreferenceBahig H, Filion E, Vu T, et al. Severe radiation pneumonitis after lung stereotactic ablative radiation therapy in patients with interstitial lung disease. Pract Radiat Oncol. 2016; 6 ( 5 ): 367 – 74.
dc.identifier.citedreferenceOzawa Y, Abe T, Omae M, et al. Impact of preexisting interstitial lung disease on acute, extensive radiation pneumonitis: retrospective analysis of patients with lung cancer. PLoS One. 2015; 10 ( 10 ): e0140437.
dc.identifier.citedreferenceOtsuka M, Monzen H, Matsumoto K, et al. Evaluation of lung toxicity risk with computed tomography ventilation image for thoracic cancer patients. PLoS One. 2018; 13 ( 10 ): e0204721.
dc.identifier.citedreferenceGalbán CJ, Han MK, Boes JL, et al. Computed tomography–based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012; 18 ( 11 ): 1711.
dc.identifier.citedreferenceBelloli EA, Degtiar I, Wang X, et al. Parametric response mapping as an imaging biomarker in lung transplant recipients. Am J Respir Crit Care Med. 2017; 195 ( 7 ): 942 – 52.
dc.identifier.citedreferenceGalbán CJ, Boes JL, Bule M, et al. Parametric response mapping as an indicator of bronchiolitis obliterans syndrome after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014; 20 ( 10 ): 1592 – 8.
dc.identifier.citedreferenceLabaki WW, Gu T, Murray S, et al. Voxel‐wise longitudinal parametric response mapping analysis of chest computed tomography in smokers. Acad Radiol. 2019; 26 ( 2 ): 217 – 23.
dc.identifier.citedreferenceOwen AF D, Hoff B, Jolly S, Ten Haken R, Galban C, Matuszak M. High‐resolution inhale/exhale CT parametric response mapping for assessment of pulmonary dysfunction in non‐small cell lung cancer patients undergoing radiation treatment. Paper presented at American Associations of Physicists in Medicine 61st Annual Meeting & Exposition; July 14–18, 2019; San Antonio, Texas, USA.
dc.identifier.citedreferenceOwen PB D, Jackson W, Fortuna A, et al., Topological parametric response mapping for use in radiation treatment planning of non–small cell lung cancer patients. Paper presented at American Association of Physicists in Medicine 60th Annual Meeting & Exposition; July 14–18, 2018; Nashville, Tennessee, USA.
dc.identifier.citedreferenceHoff BA, Pompe E, Galbán S, et al. CT‐based local distribution metric improves characterization of COPD. Sci Rep. 2017; 7 ( 1 ): 1 – 12.
dc.identifier.citedreferenceKlein S, Staring M, Murphy K, Viergever MA, Pluim JP. Elastix: a toolbox for intensity‐based medical image registration. IEEE Trans Med Imaging. 2009; 29 ( 1 ): 196 – 205.
dc.identifier.citedreferenceShamonin DP, Bron EE, Lelieveldt BP, Smits M, Klein S, Staring M. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s disease. Front Neuroinform. 2014; 7: 50.
dc.identifier.citedreferenceCastillo R, Castillo E, Guerra R, et al. A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys Med Biol. 2009; 54 ( 7 ): 1849.
dc.identifier.citedreferenceKadoya N, Nakajima Y, Saito M, et al. Multi‐institutional validation study of commercially available deformable image registration software for thoracic images. Int J Radiat Oncol Biol Phys. 2016; 96 ( 2 ): 422 – 31.
dc.identifier.citedreferenceBrock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017; 44 ( 7 ): e43 – 76.
dc.identifier.citedreferenceSievinen J, Ulmer W, Kaissl W. AAA photon dose calculation model in Eclipse. Palo Alto (CA): Varian Medical Systems. 2005; 118: 2894.
dc.identifier.citedreferenceYounge KC, Matuszak MM, Moran JM, McShan DL, Fraass BA, Roberts DA. Penalization of aperture complexity in inversely planned volumetric modulated arc therapy. Med Phys. 2012; 39 ( 11 ): 7160 – 70.
dc.identifier.citedreferenceHuang T‐C, Hsiao C‐Y, Chien C‐R, Liang J‐A, Shih T‐C, Zhang GG. IMRT treatment plans and functional planning with functional lung imaging from 4D‐CT for thoracic cancer patients. Radiat Oncol. 2013; 8 ( 1 ): 3.
dc.identifier.citedreferenceShioyama Y, Jang SY, Liu HH, et al. Preserving functional lung using perfusion imaging and intensity‐modulated radiation therapy for advanced‐stage non–small cell lung cancer. Int J Radiat Oncol Biol Phys. 2007; 68 ( 5 ): 1349 – 58.
dc.identifier.citedreferenceYamamoto T, Kabus S, Von Berg J, Lorenz C, Keall PJ. Impact of four‐dimensional computed tomography pulmonary ventilation imaging‐based functional avoidance for lung cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2011; 79 ( 1 ): 279 – 88.
dc.identifier.citedreferenceDuffy SR, Zheng Y, Muenkel J, et al. Refining complex re‐irradiation dosimetry through feasibility benchmarking and analysis for informed treatment planning. J Appl Clin Med Phys. 2020; 21: 263 – 71.
dc.identifier.citedreferenceCazoulat G, Owen D, Matuszak MM, Balter JM, Brock KK. Biomechanical deformable image registration of longitudinal lung CT images using vessel information. Phys Med Biol. 2016; 61 ( 13 ): 4826.
dc.identifier.citedreferenceRegan EA, Hokanson JE, Murphy JR, et al. Genetic epidemiology of COPD (COPDGene) study design. COPD. 2011; 7 ( 1 ): 32 – 43.
dc.identifier.citedreferenceSieren JP, Newell JD Jr, Barr RG, et al. SPIROMICS protocol for multicenter quantitative computed tomography to phenotype the lungs. Am J Respir Crit Care Med. 2016; 194 ( 7 ): 794 – 806.
dc.identifier.citedreferenceBoes JL, Bule M, Hoff BA, et al. The impact of sources of variability on parametric response mapping of lung CT scans. Tomography. 2015; 1 ( 1 ): 69.
dc.identifier.citedreferenceBoes JL, Hoff BA, Bule M, et al. Parametric response mapping monitors temporal changes on lung CT scans in the subpopulations and intermediate outcome measures in COPD Study (SPIROMICS). Acad Radiol. 2015; 22 ( 2 ): 186 – 94.
dc.identifier.citedreferenceSiegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020; 70 ( 1 ): 7 – 30.
dc.identifier.citedreferenceCheng M, Jolly S, Quarshie WO, Kapadia N, Vigneau FD. Modern radiation further improves survival in non‐small cell lung cancer: an analysis of 288,670 patients. J Cancer. 2019; 10 ( 1 ): 168.
dc.identifier.citedreferenceTyldesley S, Boyd C, Schulze K, Walker H, Mackillop WJ. Estimating the need for radiotherapy for lung cancer: an evidence‐based, epidemiologic approach. Int J Radiat Oncol Biol Phys. 2001; 49 ( 4 ): 973 – 85.
dc.identifier.citedreferenceGould MK, Munoz‐Plaza CE, Hahn EE, Lee JS, Parry C, Shen E. Comorbidity profiles and their effect on treatment selection and survival among patients with lung cancer. Ann Am Thorac Soc. 2017; 14 ( 10 ): 1571 – 80.
dc.identifier.citedreferenceAsmis TR, Ding K, Seymour L, et al. Age and comorbidity as independent prognostic factors in the treatment of non‐small‐cell lung cancer: a review of National Cancer Institute of Canada Clinical Trials Group trials. J Clin Oncol. 2008; 26 ( 1 ): 54 – 9.
dc.identifier.citedreferenceBucknell NW, Hardcastle N, Bressel M, et al. Functional lung imaging in radiation therapy for lung cancer: a systematic review and meta‐analysis. Radiother Oncol. 2018; 129 ( 2 ): 196 – 208.
dc.identifier.citedreferenceDefraene G, van Elmpt W, De Ruysscher D. Regional lung avoidance by CT numbers to reduce radiation‐induced lung damage risk in non‐small–cell lung cancer: a simulation study. Acta Oncol (Madr). 2020; 59 ( 2 ): 201 – 7.
dc.identifier.citedreferenceMunawar I, Yaremko BP, Craig J, et al. Intensity modulated radiotherapy of non‐small‐cell lung cancer incorporating SPECT ventilation imaging. Med Phys. 2010; 37 ( 4 ): 1863 – 72.
dc.identifier.citedreferenceSeppenwoolde Y, Muller SH, Theuws JC, et al. Radiation dose‐effect relations and local recovery in perfusion for patients with non–small‐cell lung cancer. Int J Radiat Oncol Biol Phys. 2000; 47 ( 3 ): 681 – 90.
dc.identifier.citedreferenceFarr KP, Kallehauge JF, Møller DS, et al. Inclusion of functional information from perfusion SPECT improves predictive value of dose–volume parameters in lung toxicity outcome after radiotherapy for non‐small cell lung cancer: a prospective study. Radiother Oncol. 2015; 117 ( 1 ): 9 – 16.
dc.identifier.citedreferenceVinogradskiy Y, Rusthoven CG, Schubert L, et al. Interim analysis of a two‐institution, prospective clinical trial of 4DCT‐ventilation‐based functional avoidance radiation therapy. Int J Radiat Oncol Biol Phys. 2018; 102 ( 4 ): 1357 – 65.
dc.identifier.citedreferenceLee E, Zeng J, Miyaoka RS, et al. Functional lung avoidance and response‐adaptive escalation (FLARE) RT: multimodality plan dosimetry of a precision radiation oncology strategy. Med Phys. 2017; 44 ( 7 ): 3418 – 29.
dc.identifier.citedreferenceKimura T, Doi Y, Nakashima T, et al. Combined ventilation and perfusion imaging correlates with the dosimetric parameters of radiation pneumonitis in radiation therapy planning for lung cancer. Int J Radiat Oncol Biol Phys. 2015; 93 ( 4 ): 778 – 87.
dc.identifier.citedreferenceCastillo R, Pham N, Ansari S, et al. Pre‐radiotherapy FDG PET predicts radiation pneumonitis in lung cancer. Radiat Oncol. 2014; 9 ( 1 ): 74.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.