Show simple item record

Resistance evolution, from genetic mechanism to ecological context

dc.contributor.authorBaucom, Regina S.
dc.contributor.authorIriart, Veronica
dc.contributor.authorKreiner, Julia M.
dc.contributor.authorYakimowski, Sarah
dc.date.accessioned2021-12-02T02:30:05Z
dc.date.available2022-12-01 21:30:04en
dc.date.available2021-12-02T02:30:05Z
dc.date.issued2021-11
dc.identifier.citationBaucom, Regina S.; Iriart, Veronica; Kreiner, Julia M.; Yakimowski, Sarah (2021). "Resistance evolution, from genetic mechanism to ecological context." Molecular Ecology (21): 5299-5302.
dc.identifier.issn0962-1083
dc.identifier.issn1365-294X
dc.identifier.urihttps://hdl.handle.net/2027.42/170995
dc.publisherColumbia University Press
dc.publisherWiley Periodicals, Inc.
dc.titleResistance evolution, from genetic mechanism to ecological context
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170995/1/mec16224_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170995/2/mec16224.pdf
dc.identifier.doi10.1111/mec.16224
dc.identifier.sourceMolecular Ecology
dc.identifier.citedreferenceTranel, P. J., Wright, T. R., & Heap, I. M. ( 2021 ). Mutations in herbicide‐resistant weeds to ALS inhibitors. International Survey of Herbicide Resistant Weeds. http://www.weedscience.com
dc.identifier.citedreferenceYakimowski, S. B., Teitel, Z., & Caruso, C. M. ( 2021 ). Defense by duplication: The relation between phenotypic glyphosate resistance and EPSPS gene copy number variation in Amaranthus palmeri. Molecular Ecology, 30 ( 21 ), 5328 – 5342. https://doi.org/10.1111/mec.16231
dc.identifier.citedreferenceDobzhansky, T. ( 1937 ). Genetics and the origin of species. Columbia University Press.
dc.identifier.citedreferenceGaines, T. A., Patterson, E. L., & Neve, P. ( 2019 ). Molecular mechanisms of adaptive evolution revealed by global selection for glyphosate resistance. The New Phytologist, 223, 1770 – 1775. https://doi.org/10.1111/nph.15858
dc.identifier.citedreferenceGaines, T., Slavov, G., Hughes, D., Kuepper, A., Sparks, C., Oliva, J., Vila‐Aiub, M., Garcia, M., Merotto, A. Jr, & Neve, P. ( 2021 ). Investigating the origins and evolution of a glyphosate‐resistant weed invasion in South America. Molecular Ecology, 30 ( 21 ), 5360 – 5372. https://doi.org/10.1111/mec.16221
dc.identifier.citedreferenceHartmann, F. E., Vonlanthen, T., Singh, N. K. et al ( 2020 ). The complex genomic basis of rapid convergent adaptation to pesticides across continents in a fungal plant pathogen. Molecular Ecology, 30 ( 21 ), 5390 – 5405. https://doi.org/10.1111/mec.15737
dc.identifier.citedreferenceHawkins, N. J., & Fraaije, B. A. ( 2021 ). Contrasting levels of genetic predictability in the evolution of resistance to major classes of fungicides. Molecular Ecology, 30 ( 21 ), 5318 – 5327. https://doi.org/10.1111/mec.15877
dc.identifier.citedreferenceIriart, V., Baucom, R. S., & Ashman, T. L. ( 2021 ). Herbicides as anthropogenic drivers of eco‐evo feedbacks in plant communities at the agro‐ecological interface. Molecular Ecology, 30 ( 21 ), 5406 – 5421. https://doi.org/10.1111/mec.15510
dc.identifier.citedreferenceKoo, D. H., Molin, W. T., Saski, C. A., Jiang, J., Putta, K., Jugulam, M., Friebe, B., & Gill, B. S. ( 2018 ). Extrachromosomal circular DNA‐based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri. Proceedings of the National Academy of Sciences of the United States of America, 115, 3332 – 3337.
dc.identifier.citedreferenceKreiner, J. M., Giacomini, D. A., Bemm, F., Waithaka, B., Regalado, J., Lanz, C., Hildebrandt, J., Sikkema, P. H., Tranel, P. J., Weigel, D., & Stinchcombe, J. R. ( 2019 ). Multiple modes of convergent adaptation in the spread of glyphosate‐resistant Amaranthus tuberculatus. Proceedings of the National Academy of Sciences of the United States of America, 116, 21076 – 21084.
dc.identifier.citedreferenceKreiner, J. M., Tranel, P. J., Weigel, D., Stinchcombe, J. R., & Wright, S. I. ( 2021 ). The genetic architecture and population genomic signatures of glyphosate resistance in Amaranthus tuberculatus. Molecular Ecology, 30 ( 21 ), 5373 – 5389. https://doi.org/10.1111/mec.15920
dc.identifier.citedreferenceMartin, A., & Orgogozo, V. ( 2013 ). The loci of repeated evolution: A catalog of genetic hotspots of phenotypic variation. Evolution, 67, 1235 – 1250. https://doi.org/10.1111/evo.12081
dc.identifier.citedreferencePaddock, K. J., Pereira, A. E., Finke, D. L., Ericsson, A. C., Hibbard, B. E., & Shelby, K. S. ( 2021 ) Host resistance to Bacillus thuringiensis is linked to altered bacterial community within a specialist insect herbivore. Molecular Ecology, 30 ( 21 ), 5438 – 5453. https://doi.org/10.1111/mec.15875
dc.identifier.citedreferenceRavet, K., Sparks, C., Dixon, A., Küpper, A., Westra, E., Pettinga, D., Tranel, P., Felix, J., Morishita, D., Jha, P., & Kniss, A. ( 2021 ) Genomic‐based epidemiology reveals gene flow and independent origins of glyphosate resistance in Bassia scoparia populations across North America. Molecular Ecology, 30 ( 21 ), 5343 – 5359. https://doi.org/10.1111/mec.16215
dc.identifier.citedreferenceVan Etten, M. L., Soble, A., & Baucom, R. S. ( 2021 ). Variable inbreeding depression may explain associations between the mating system and herbicide resistance in the common morning glory. Molecular Ecology, 30 ( 21 ), 5422 – 5437. https://doi.org/10.1111/mec.15852
dc.identifier.citedreferenceBaucom, R. S. ( 2016 ). The remarkable repeated evolution of herbicide resistance. American Journal of Botany, 103, 181 – 183. https://doi.org/10.3732/ajb.1500510
dc.identifier.citedreferenceBaucom, R. S. ( 2019 ). Evolutionary and ecological insights from herbicide‐resistant weeds: What have we learned about plant adaptation, and what is left to uncover? The New Phytologist, 223, 68 – 82. https://doi.org/10.1111/nph.15723
dc.identifier.citedreferenceClarkson, C. S., Miles, A., Harding, N. J., O’Reilly, A. O., Weetman, D., Kwiatkowski, D., & Donnelly, M. J. ( 2021 ). The genetic architecture of target‐site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii. Molecular Ecology, 30 ( 21 ), 5303 – 5317. https://doi.org/10.1111/mec.15845
dc.identifier.citedreferenceCousens, R. D., & Fournier‐Level, A. ( 2018 ). Herbicide resistance costs: What are we actually measuring and why?: Herbicide resistance costs. Pest Management Science, 75, 349. https://doi.org/10.1002/ps.4819
dc.identifier.citedreferenceDélye, C., Jasieniuk, M., & Le Corre, V. ( 2013 ). Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics, 29, 649 – 658. https://doi.org/10.1016/j.tig.2013.06.001
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.