Show simple item record

Ectomycorrhizal fungal decay traits along a soil nitrogen gradient

dc.contributor.authorPellitier, Peter T.
dc.contributor.authorZak, Donald R.
dc.date.accessioned2021-12-02T02:30:10Z
dc.date.available2023-01-01 21:30:08en
dc.date.available2021-12-02T02:30:10Z
dc.date.issued2021-12
dc.identifier.citationPellitier, Peter T.; Zak, Donald R. (2021). "Ectomycorrhizal fungal decay traits along a soil nitrogen gradient." New Phytologist (5): 2152-2164.
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttps://hdl.handle.net/2027.42/170997
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer Berlin Heidelberg
dc.subject.othershotgun metagenomics
dc.subject.othercommunity aggregated traits
dc.subject.otherorganic nitrogen
dc.subject.othersoil organic matter (SOM)
dc.subject.otherectomycorrhizal fungi
dc.subject.othercommunity assembly
dc.subject.othersoil gradient
dc.titleEctomycorrhizal fungal decay traits along a soil nitrogen gradient
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170997/1/nph17734_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170997/2/nph17734.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/170997/3/nph17734-sup-0001-supinfo.pdf
dc.identifier.doi10.1111/nph.17734
dc.identifier.sourceNew Phytologist
dc.identifier.citedreferenceRavanbakhsh M, Kowalchuk GA, Jousset A. 2019. Root‐associated microorganisms reprogram plant life history along the growth–stress resistance tradeoff. ISME Journal 13: 3093 – 3101.
dc.identifier.citedreferenceSork VL, Fitz‐Gibbon ST, Puiu D, Crepeau M, Gugger PF, Sherman R, Stevens K, Langley CH, Pellegrini M, Salzberg SL. 2016. First draft assembly and annotation of the genome of a California endemic oak. Genes|Genomes|Genetics 6: 3485 – 3495.
dc.identifier.citedreferenceSterkenburg E, Bahr A, Durling M, Clemmensen KE, Lindahl BD. 2015. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytologist 207: 1145 – 1158.
dc.identifier.citedreferenceSterkenburg E, Clemmensen KE, Ekblad A, Finlay RD, Lindahl BD. 2018. Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. ISME Journal 12: 2187 – 2197.
dc.identifier.citedreferenceSulman BN, Shevliakova E, Brzostek ER, Kivlin SN, Malyshev S, Menge DNL, Zhang X. 2019. Diverse mycorrhizal associations enhance terrestrial C storage in a global model. Global Biogeochemical Cycles 33: 501 – 523.
dc.identifier.citedreferenceSützl L, Laurent CVFP, Abrera AT, Schütz G, Ludwig R, Haltrich D. 2018. Multiplicity of enzymatic functions in the CAZy AA3 family. Applied Microbiology and Biotechnology 102: 2477 – 2492.
dc.identifier.citedreferenceTaylor AFS, Martin F, Read DJ. 2000. Fungal diversity in ectomycorrhizal communities of Norway Spruce [ Picea abies (L.) Karst.] and Beech ( Fagus sylvatica L.) Along North‐South Transects in Europe. In: Schulze E‐D, ed. Ecological studies. Carbon and nitrogen cycling in European forest ecosystems. Berlin/Heidelberg, Germany: Springer, 343 – 365.
dc.identifier.citedreferenceTaylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, Pennanen T. 2016. Accurate estimation of fungal diversity and abundance through improved lineage‐specific primers optimized for Illumina amplicon sequencing. Applied and Environmental Microbiology 82: 7217 – 7226.
dc.identifier.citedreferenceTedersoo L, Smith ME. 2013. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biology Reviews 27: 83 – 99.
dc.identifier.citedreferenceTerrer C, Phillips RP, Hungate BA, Rosende J, Pett‐Ridge J, Craig ME, van Groenigen KJ, Keenan TF, Sulman BN, Stocker BD et al. 2021. A trade‐off between plant and soil carbon storage under elevated CO 2. Nature 591: 599 – 603.
dc.identifier.citedreferenceTerrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC. 2016. Mycorrhizal association as a primary control of the CO 2 fertilization effect. Science 353: 72 – 74.
dc.identifier.citedreferenceToljander JF, Eberhardt U, Toljander YK, Paul LR, Taylor AFS. 2006. Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytologist 170: 873 – 884.
dc.identifier.citedreferenceTreiber ML, Taft DH, Korf I, Mills DA, Lemay DG. 2020. Pre and post‐sequencing recommendations for functional annotation of human fecal metagenomes. BMC Bioinformatics 21: e74.
dc.identifier.citedreferencevan der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, Atkinson B, Benham S, Carroll C, Cools N et al. 2018. Environment and host as large‐scale controls of ectomycorrhizal fungi. Nature 558: 243 – 248.
dc.identifier.citedreferenceVillares A, Moreau C, Bennati‐Granier C, Garajova S, Foucat L, Falourd X, Saake B, Berrin J‐G, Cathala B. 2017. Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Scientific Reports 7: e40262.
dc.identifier.citedreferenceViolle C, Navas M‐L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. 2007. Let the concept of trait be functional! Oikos 116: 882 – 892.
dc.identifier.citedreferenceVitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13: 87 – 115.
dc.identifier.citedreferenceWasyliw J, Karst J. 2020. Shifts in ectomycorrhizal exploration types parallel leaf and fine root area with forest age. Journal of Ecology 108: 2270 – 2282.
dc.identifier.citedreferenceWood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with K raken 2. Genome Biology 20: 257.
dc.identifier.citedreferenceZak DR, Argiroff WA, Freedman ZB, Upchurch RA, Entwistle EM, Romanowicz KJ. 2019a. Anthropogenic N deposition, fungal gene expression, and an increasing soil carbon sink in the Northern Hemisphere. Ecology 100: e02804.
dc.identifier.citedreferenceZak DR, Pellitier PT, Argiroff WA, Castillo B, James TY, Nave LE, Averill C, Beidler KV, Bhatnagar J, Blesh J et al. 2019b. Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytologist 223: 33 – 39.
dc.identifier.citedreferenceZak DR, Pregitzer KS. 1990. Spatial and temporal variability of nitrogen cycling in northern Lower Michigan. Forest Science 36: 367 – 380.
dc.identifier.citedreferenceZak DR, Pregitzer KS, Host GE. 1986. Landscape variation in nitrogen mineralization and nitrification. Canadian Journal of Forest Research 16: 1258 – 1263.
dc.identifier.citedreferenceZanne AE, Abarenkov K, Afkhami ME, Aguilar‐Trigueros CA, Bates S, Bhatnagar JM, Busby PE, Christian N, Cornwell WK, Crowther TW et al. 2020. Fungal functional ecology: bringing a trait‐based approach to plant‐associated fungi. Biological Reviews 99: 409 – 433.
dc.identifier.citedreferenceAckerly DD. 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences 164: S165 – S184.
dc.identifier.citedreferenceAckerly DD, Cornwell WK. 2007. A trait‐based approach to community assembly: partitioning of species trait values into within and among‐community components. Ecology Letters 10: 135 – 145.
dc.identifier.citedreferenceAverill C, Turner BL, Finzi AC. 2014. Mycorrhiza‐mediated competition between plants and decomposers drives soil carbon storage. Nature 505: 543 – 545.
dc.identifier.citedreferenceAvis PG. 2012. Ectomycorrhizal iconoclasts: the ITS rDNA diversity and nitrophilic tendencies of fetid Russula. Mycologia 104: 998 – 1007.
dc.identifier.citedreferenceBaker ME, King RS. 2010. A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods in Ecology and Evolution 1: 25 – 37.
dc.identifier.citedreferenceBernard‐Verdier M, Navas M‐L, Vellend M, Violle C, Fayolle A, Garnier E. 2012. Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology 100: 1422 – 1433.
dc.identifier.citedreferenceBlatzer M, Beauvais A, Henrissat B, Latgé J‐P. 2020. Revisiting old questions and new approaches to investigate the fungal cell wall construction. In: Latgé JP, ed. Current topics in microbiology and immunology, vol 425. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg, 331 – 369.
dc.identifier.citedreferenceBödeker ITM, Clemmensen KE, de Boer W, Martin F, Olson Å, Lindahl BD. 2014. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytologist 203: 245 – 256.
dc.identifier.citedreferenceBödeker ITM, Nygren CMR, Taylor AFS, Olson Å, Lindahl BD. 2009. ClassII peroxidase‐encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. ISME Journal 3: 1387 – 1395.
dc.identifier.citedreferenceBogar L, Peay K, Kornfeld A, Huggins J, Hortal S, Anderson I, Kennedy P. 2019. Plant‐mediated partner discrimination in ectomycorrhizal mutualisms. Mycorrhiza 29: 97 – 111.
dc.identifier.citedreferenceBouma‐Gregson K, Olm MR, Probst AJ, Anantharaman K, Power ME, Banfield JF. 2019. Impacts of microbial assemblage and environmental conditions on the distribution of anatoxin‐a producing cyanobacteria within a river network. ISME Journal 13: 1618 – 1634.
dc.identifier.citedreferenceBradford MA, Wood SA, Addicott ET, Fenichel EP, Fields N, González‐Rivero J, Jevon FV, Maynard DS, Oldfield EE, Polussa A et al. 2021. Quantifying microbial control of soil organic matter dynamics at macrosystem scales. Biogeochemistry 156: 19 – 40.
dc.identifier.citedreferenceBuchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using D iamond. Nature Methods 12: 59 – 60.
dc.identifier.citedreferenceCallahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. D ada 2: high‐resolution sample inference from Illumina amplicon data. Nature Methods 13: 581 – 583.
dc.identifier.citedreferenceChristian N, Bever JD. 2018. Carbon allocation and competition maintain variation in plant root mutualisms. Ecology and Evolution 8: 5792 – 5800.
dc.identifier.citedreferenceCornwell WK, Ackerly DD. 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79: 109 – 126.
dc.identifier.citedreferenceCox F, Barsoum N, Lilleskov EA, Bidartondo MI. 2010. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecology Letters 13: 1103 – 1113.
dc.identifier.citedreferenceDefrenne CE, Philpott TJ, Guichon SHA, Roach WJ, Pickles BJ, Simard SW. 2019. Shifts in ectomycorrhizal fungal communities and exploration types relate to the environment and fine‐root traits across interior Douglas‐fir forests of western Canada. Frontiers in Plant Science 10: e643.
dc.identifier.citedreferenceDiaz S, Cabido M, Casanoves F. 1998. Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science 9: 113 – 122.
dc.identifier.citedreferenceDoré J, Perraud M, Dieryckx C, Kohler A, Morin E, Henrissat B, Lindquist E, Zimmermann SD, Girard V, Kuo A et al. 2015. Comparative genomics, proteomics and transcriptomics give new insight into the exoproteome of the basidiomycete Hebeloma cylindrosporum and its involvement in ectomycorrhizal symbiosis. New Phytologist 208: 1169 – 1187.
dc.identifier.citedreferenceDuhamel M, Wan J, Bogar LM, Segnitz RM, Duncritts NC, Peay KG. 2019. Plant selection initiates alternative successional trajectories in the soil microbial community after disturbance. Ecological Monographs 89: e01367.
dc.identifier.citedreferenceFerrier S, Manion G, Elith J, Richardson K. 2007. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions 13: 252 – 264.
dc.identifier.citedreferenceFierer N, Barberán A, Laughlin DC. 2014. Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities. Frontiers in Microbiology 5: e 614.
dc.identifier.citedreferenceFierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG. 2012. Cross‐biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, USA 109: 21390 – 21395.
dc.identifier.citedreferenceFitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. 2018. Assembly and ecological function of the root microbiome across angiosperm plant species. Proceedings of the National Academy of Sciences, USA 115: E1157 – E1165.
dc.identifier.citedreferenceFitzpatrick MC, Keller SR. 2015. Ecological genomics meets community‐level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecology Letters 18: 1 – 16.
dc.identifier.citedreferenceFloudas D, Bentzer J, Ahrén D, Johansson T, Persson P, Tunlid A. 2020. Uncovering the hidden diversity of litter‐decomposition mechanisms in mushroom‐forming fungi. ISME Journal 14: 2046 – 2059.
dc.identifier.citedreferenceFry EL, Long JRD, Garrido LÁ, Alvarez N, Carrillo Y, Castañeda‐Gómez L, Chomel M, Dondini M, Drake JE, Hasegawa S et al. 2019. Using plant, microbe, and soil fauna traits to improve the predictive power of biogeochemical models. Methods in Ecology and Evolution 10: 146 – 157.
dc.identifier.citedreferenceGenre A, Lanfranco L, Perotto S, Bonfante P. 2020. Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology 18: 1659 – 1660.
dc.identifier.citedreferenceHall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB, del Giorgio PA, Evans SE, Graham EB, Jones SE et al. 2018. Understanding how microbiomes influence the systems they inhabit. Nature Microbiology 3: 977 – 982.
dc.identifier.citedreferenceHammel KE, Cullen D. 2008. Role of fungal peroxidases in biological ligninolysis. Current Opinion in Plant Biology 11: 349 – 355.
dc.identifier.citedreferenceHobbie EA, Agerer R. 2010. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant and Soil 327: 71 – 83.
dc.identifier.citedreferenceHögberg P, Näsholm T, Franklin O, Högberg MN. 2017. Tamm review: on the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. Forest Ecology and Management 403: 161 – 185.
dc.identifier.citedreferenceHortal S, Plett KL, Plett JM, Cresswell T, Johansen M, Pendall E, Anderson IC. 2017. Role of plant–fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME Journal 11: 2666 – 2676.
dc.identifier.citedreferenceJanusz G, Pawlik A, Sulej J, Świderska‐Burek U, Jarosz‐Wilkołazka A, Paszczyński A. 2017. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews 41: 941 – 962.
dc.identifier.citedreferenceJavelle A, André B, Marini A‐M, Chalot M. 2003. High‐affinity ammonium transporters and nitrogen sensing in mycorrhizas. Trends in Microbiology 11: 53 – 55.
dc.identifier.citedreferenceKielland K. 1994. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75: 2373 – 2383.
dc.identifier.citedreferenceKohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A et al. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics 47: 410 – 415.
dc.identifier.citedreferenceKoide RT, Fernandez C, Malcolm G. 2014. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. New Phytologist 201: 433 – 439.
dc.identifier.citedreferenceKonar A, Choudhury O, Bullis R, Fiedler L, Kruser JM, Stephens MT, Gailing O, Schlarbaum S, Coggeshall MV, Staton ME et al. 2017. High‐quality genetic mapping with ddRADseq in the non‐model tree Quercus rubra. BMC Genomics 18: e417.
dc.identifier.citedreferenceKranabetter JM, Hawkins BJ, Jones MD, Robbins S, Dyer T, Li T. 2015. Species turnover ( β ‐diversity) in ectomycorrhizal fungi linked to uptake capacity. Molecular Ecology 24: 5992 – 6005.
dc.identifier.citedreferenceKranabetter JM, MacKenzie WH. 2010. Contrasts among mycorrhizal plant guilds in foliar nitrogen concentration and δ 15 N along productivity gradients of a boreal forest. Ecosystems 13: 108 – 117.
dc.identifier.citedreferenceKriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simão FA, Zdobnov EM. 2019. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Research 47: D807 – D811.
dc.identifier.citedreferenceKües U, Rühl M. 2011. Multiple multi‐copper oxidase gene families in basidiomycetes – what for? Current Genomics 12: 72 – 94.
dc.identifier.citedreferenceLehmann J, Hansel CM, Kaiser C, Kleber M, Maher K, Manzoni S, Nunan N, Reichstein M, Schimel JP, Torn MS et al. 2020. Persistence of soil organic carbon caused by functional complexity. Nature Geoscience 13: 529 – 534.
dc.identifier.citedreferenceLi H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754 – 1760.
dc.identifier.citedreferenceLilleskov EA, Fahey TJ, Horton TR, Lovett GM. 2002a. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83: 104 – 115.
dc.identifier.citedreferenceLilleskov EA, Hobbie EA, Fahey TJ. 2002b. Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytologist 154: 219 – 231.
dc.identifier.citedreferenceLindahl BD, Kyaschenko J, Varenius K, Clemmensen KE, Dahlberg A, Karltun E, Stendahl J. 2021. A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest. Ecology Letters 24: 1341 – 1351.
dc.identifier.citedreferenceLindahl BD, Tunlid A. 2015. Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs. New Phytologist 205: 1443 – 1447.
dc.identifier.citedreferenceMalik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD. 2020a. Defining trait‐based microbial strategies with consequences for soil carbon cycling under climate change. ISME Journal 14: 1 – 9.
dc.identifier.citedreferenceMalik AA, Swenson T, Weihe C, Morrison EW, Martiny JBH, Brodie EL, Northen TR, Allison SD. 2020b. Drought and plant litter chemistry alter microbial gene expression and metabolite production. ISME Journal 14: 2236 – 2247.
dc.identifier.citedreferenceMaynard DS, Bradford MA, Covey KR, Lindner D, Glaeser J, Talbert DA, Tinker PJ, Walker DM, Crowther TW. 2019. Consistent trade‐offs in fungal trait expression across broad spatial scales. Nature Microbiology 4: 846 – 853.
dc.identifier.citedreferenceMcClaugherty CA, Pastor J, Aber JD, Melillo JM. 1985. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66: 266 – 275.
dc.identifier.citedreferenceMeeds JA, Marty Kranabetter J, Zigg I, Dunn D, Miros F, Shipley P, Jones MD. 2021. Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME Journal 15: 1478 – 1489.
dc.identifier.citedreferenceMiyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sánchez‐García M, Morin E, Andreopoulos B, Barry KW, Bonito G et al. 2020. Large‐scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications 11: e5125.
dc.identifier.citedreferenceMoeller HV, Peay KG, Fukami T. 2014. Ectomycorrhizal fungal traits reflect environmental conditions along a coastal California edaphic gradient. FEMS Microbiology Ecology 87: 797 – 806.
dc.identifier.citedreferenceNäsholm T, Kielland K, Ganeteg U. 2009. Uptake of organic nitrogen by plants. New Phytologist 182: 31 – 48.
dc.identifier.citedreferenceNemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P et al. 2013. Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews 77: 342 – 356.
dc.identifier.citedreferenceNicolás C, Martin‐Bertelsen T, Floudas D, Bentzer J, Smits M, Johansson T, Troein C, Persson P, Tunlid A. 2019. The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME Journal 13: 977 – 988.
dc.identifier.citedreferenceNilsson LO, Giesler R, Bååth E, Wallander H. 2005. Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytologist 165: 613 – 622.
dc.identifier.citedreferenceNilsson RH, Larsson K‐H, Taylor AF S, Bengtsson‐Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L et al. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research 47: D259 – D264.
dc.identifier.citedreferenceNordin A, Schmidt IK, Shaver GR. 2004. Nitrogen uptake by arctic soil microbes and plants in relation to soil nitrogen supply. Ecology 85: 955 – 962.
dc.identifier.citedreferenceOksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P et al. 2020. vegan: community ecology package. R package v.2.5‐7. [WWW document] URL https://CRAN.R‐project.org/package=vegan [accessed 12 June 2020].
dc.identifier.citedreferenceOrwin KH, Kirschbaum MUF, St John MG, Dickie IA. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model‐based assessment. Ecology Letters 14: 493 – 502.
dc.identifier.citedreferencePastor J, Aber JD, McClaugherty CA, Melillo JM. 1984. Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65: 256 – 268.
dc.identifier.citedreferencePeay KG. 2016. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annual Review of Ecology, Evolution, and Systematics 47: 143 – 164.
dc.identifier.citedreferencePeay KG, Russo SE, McGuire KL, Lim Z, Chan JP, Tan S, Davies SJ. 2015. Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient. Ecology Letters 18: 807 – 816.
dc.identifier.citedreferencePeay KG, Schubert MG, Nguyen NH, Bruns TD. 2012. Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Molecular Ecology 21: 4122 – 4136.
dc.identifier.citedreferencePellitier PT, Ibáñez I, Zak DR, Argiroff WA, Acharya K. 2021a. Ectomycorrhizal access to organic nitrogen mediates CO 2 fertilization response in a dominant tree species. Nature Communications 12: e5403.
dc.identifier.citedreferencePellitier PT, Zak DR. 2018. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. New Phytologist 217: 68 – 73.
dc.identifier.citedreferencePellitier PT, Zak DR, Argiroff WA, Upchurch RA. 2021b. Coupled shifts in ectomycorrhizal communities and plant uptake of organic nitrogen along a soil gradient: an isotopic perspective. Ecosystems. doi: 10.1007/s10021‐021‐00628‐6.
dc.identifier.citedreferencePeng M, Aguilar‐Pontes MV, Hainaut M, Henrissat B, Hildén K, Mäkelä MR, de Vries RP. 2018. Comparative analysis of basidiomycete transcriptomes reveals a core set of expressed genes encoding plant biomass degrading enzymes. Fungal Genetics and Biology 112: 40 – 46.
dc.identifier.citedreferencePhillips RP, Brzostek E, Midgley MG. 2013. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytologist 199: 41 – 51.
dc.identifier.citedreferencePierre‐Emmanuel C, François M, Marc‐André S, Myriam D, Stéven C, Fabio Z, Marc B, Claude P, Adrien T, Jean G et al. 2016. Into the functional ecology of ectomycorrhizal communities: environmental filtering of enzymatic activities. Journal of Ecology 104: 1585 – 1598.
dc.identifier.citedreferencePinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2017. nlme: linear and nonlinear mixed effects models. R package v.3.1‐131. [WWW document] URL https://CRAN.R‐project.org/package=nlme [accessed 18 June 2020].
dc.identifier.citedreferenceQin C, Zhu K, Chiariello NR, Field CB, Peay KG. 2020. Fire history and plant community composition outweigh decadal multi‐factor global change as drivers of microbial composition in an annual grassland. Journal of Ecology 108: 611 – 625.
dc.identifier.citedreferenceQuinn TP, Erb I, Gloor G, Notredame C, Richardson MF, Crowley TM. 2019. A field guide for the compositional analysis of any‐omics data. GigaScience 8: giz107.
dc.identifier.citedreferenceQuinn TP, Erb I, Richardson MF, Crowley TM. 2018. Understanding sequencing data as compositions: an outlook and review. Bioinformatics 34: 2870 – 2878.
dc.identifier.citedreferenceRath KM, Fierer N, Murphy DV, Rousk J. 2019. Linking bacterial community composition to soil salinity along environmental gradients. ISME Journal 13: 836 – 846.
dc.identifier.citedreferenceRead DJ, Perez‐Moreno J. 2003. Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance? New Phytologist 157: 475 – 492.
dc.identifier.citedreferenceSatinsky BM, Smith CB, Sharma S, Landa M, Medeiros PM, Coles VJ, Yager PL, Crump BC, Moran MA. 2017. Expression patterns of elemental cycling genes in the Amazon River plume. ISME Journal 11: 1852 – 1864.
dc.identifier.citedreferenceSchimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85: 591 – 602.
dc.identifier.citedreferenceShah F, Nicolás C, Bentzer J, Ellström M, Smits M, Rineau F, Canbäck B, Floudas D, Carleer R, Lackner G et al. 2016. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytologist 209: 1705 – 1719.
dc.identifier.citedreferenceShipley B, De Bello F, Cornelissen JHC, Laliberté E, Laughlin DC, Reich PB. 2016. Reinforcing loose foundation stones in trait‐based plant ecology. Oecologia 180: 923 – 931.
dc.identifier.citedreferenceSmith SE, Read DJ. 2010. Mycorrhizal symbiosis. Madison WI, USA: Academic Press.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.