Show simple item record

Repeat RNA Toxicity Drives Ribosomal RNA Processing Defects in SCA2

dc.contributor.authorSkariah, Geena
dc.contributor.authorAlbin, Roger Lee
dc.date.accessioned2021-12-02T02:30:21Z
dc.date.available2022-12-01 21:30:20en
dc.date.available2021-12-02T02:30:21Z
dc.date.issued2021-11
dc.identifier.citationSkariah, Geena; Albin, Roger Lee (2021). "Repeat RNA Toxicity Drives Ribosomal RNA Processing Defects in SCA2." Movement Disorders 36(11): 2464-2467.
dc.identifier.issn0885-3185
dc.identifier.issn1531-8257
dc.identifier.urihttps://hdl.handle.net/2027.42/171001
dc.publisherJohn Wiley & Sons, Inc.
dc.titleRepeat RNA Toxicity Drives Ribosomal RNA Processing Defects in SCA2
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171001/1/mds28795_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171001/2/mds28795.pdf
dc.identifier.doi10.1002/mds.28795
dc.identifier.sourceMovement Disorders
dc.identifier.citedreferenceKelmer Sacramento E, Kirkpatrick JM, Mazzetto M, et al. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol Syst Biol 2020; 16: e9596.
dc.identifier.citedreferenceTsoi H, Chan HY. Roles of the nucleolus in the CAG RNA‐mediated toxicity. Biochim Biophys Acta 1842; 2014: 779 – 784.
dc.identifier.citedreferenceLee J, Hwang YJ, Ryu H, Kowall NW, Ryu H. Nucleolar dysfunction in Huntington’s disease. Biochim Biophys Acta 1842; 2014: 785 – 790.
dc.identifier.citedreferenceHetman M, Slomnicki LP. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J Neurochem 2019; 148: 325 – 347.
dc.identifier.citedreferenceTavernarakis N. Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol 2008; 18: 228 – 235.
dc.identifier.citedreferenceRattan SI. Synthesis, modifications, and turnover of proteins during aging. Exp Gerontol 1996; 31: 33 – 47.
dc.identifier.citedreferenceKapur M, Ackerman SL. mRNA translation gone awry: translation fidelity and neurological disease. Trends Genet 2018; 34: 218 – 231.
dc.identifier.citedreferenceCurran SP, Ruvkun G. Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 2007; 3: e56.
dc.identifier.citedreferenceDavie K, Janssens J, Koldere D, et al. A single‐cell transcriptome atlas of the aging drosophila brain. Cell 2018; 174: 982 – 998.e920.
dc.identifier.citedreferenceXimerakis M, Lipnick SL, Innes BT, et al. Single‐cell transcriptomic profiling of the aging mouse brain. Nat Neurosci 2019; 22: 1696 – 1708.
dc.identifier.citedreferenceMüller‐Nedebock AC, van der Westhuizen FH, Kõks S, Bardien S. Nuclear genes associated with mitochondrial DNA processes as contributors to Parkinson’s disease risk. Mov Disord 2021; 36: 815 – 831.
dc.identifier.citedreferenceNorat P, Soldozy S, Sokolowski JD, et al. Mitochondrial dysfunction in neurological disorders: exploring mitochondrial transplantation. NPJ Regen Med 2020; 5: 22.
dc.identifier.citedreferenceDillman AA, Majounie E, Ding J, et al. Transcriptomic profiling of the human brain reveals that altered synaptic gene expression is associated with chronological aging. Sci Rep 2017; 7: 16890.
dc.identifier.citedreferenceKapur M, Monaghan CE, Ackerman SL. Regulation of mRNA translation in neurons‐A matter of life and death. Neuron 2017; 96: 616 – 637.
dc.identifier.citedreferenceSkariah G, Todd PK. Translational control in aging and neurodegeneration. Wiley Interdiscip Rev RNA 2021; 12: e1628.
dc.identifier.citedreferencePulst S‐M, Nechiporuk A, Nechiporuk T, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996; 14: 269 – 276.
dc.identifier.citedreferenceImbert G, Saudou F, Yvert G, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 1996; 14: 285 – 291.
dc.identifier.citedreferenceFilla A, De Michele G, Santoro L, et al. Spinocerebellar ataxia type 2 in southern Italy: a clinical and molecular study of 30 families. J Neurol 1999; 246: 467 – 471.
dc.identifier.citedreferenceVelázquez‐Pérez L, Rodríguez‐Labrada R, García‐Rodríguez JC, Almaguer‐Mederos LE, Cruz‐Mariño T, Laffita‐Mesa JM. A comprehensive review of spinocerebellar ataxia type 2 in Cuba. Cerebellum 2011; 10: 184 – 198.
dc.identifier.citedreferenceEstrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol 1999; 97: 306 – 310.
dc.identifier.citedreferenceSchöls L, Reimold M, Seidel K, et al. No parkinsonism in SCA2 and SCA3 despite severe neurodegeneration of the dopaminergic substantia nigra. Brain 2015; 138: 3316 – 3326.
dc.identifier.citedreferenceLieberman AP, Shakkottai VG, Albin RL. Polyglutamine Repeats in Neurodegenerative Diseases. Annu Rev Pathol 2019; 14: 1 – 27.
dc.identifier.citedreferencevan Eyk CL, Richards RI. Dynamic mutations: where are they now? Adv Exp Med Biol 2012; 769: 55 – 77.
dc.identifier.citedreferenceLi PP, Moulick R, Feng H, et al. RNA toxicity and perturbation of rRNA processing in spinocerebellar ataxia type 2. Mov Disord 2021. DOI: 10.1002/mds.28729
dc.identifier.citedreferenceAntenora A, Rinaldi C, Roca A, et al. The multiple faces of spinocerebellar ataxia type 2. Ann Clin Transl Neurol 2017; 4: 687 – 695.
dc.identifier.citedreferenceElden AC, Kim H‐J, Hart MP, et al. Ataxin‐2 intermediate‐length polyglutamine expansions are associated with increased risk for ALS. Nature 2010; 466: 1069 – 1075.
dc.identifier.citedreferenceMagaña JJ, Velázquez‐Pérez L, Cisneros B. Spinocerebellar ataxia type 2: clinical presentation, molecular mechanisms, and therapeutic perspectives. Mol Neurobiol 2013; 47: 90 – 104.
dc.identifier.citedreferenceMalik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol 2021; 22: 644.
dc.identifier.citedreferenceJafar‐Nejad P, Ward CS, Richman R, Orr HT, Zoghbi HY. Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14‐3‐3epsilon haploinsufficiency in mice underscores complex pathogenicity in neurodegeneration. Proc Natl Acad Sci U S A 2011; 108: 2142 – 2147.
dc.identifier.citedreferenceScoles DR, Ho MH, Dansithong W, et al. Repeat associated non‐aug translation (RAN translation) dependent on sequence downstream of the ATXN2 CAG repeat. PLoS One 2015; 10: e0128769.
dc.identifier.citedreferenceMiller JW, Urbinati CR, Teng‐Umnuay P, et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 2000; 19: 4439 – 4448.
dc.identifier.citedreferenceDragon F, Gallagher JE, Compagnone‐Post PA, et al. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 2002; 417: 967 – 970.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.