Show simple item record

Robust method for optimal treatment decision making based on survival data

dc.contributor.authorFang, Yuexin
dc.contributor.authorZhang, Baqun
dc.contributor.authorZhang, Min
dc.date.accessioned2021-12-02T02:30:31Z
dc.date.available2023-01-01 21:30:29en
dc.date.available2021-12-02T02:30:31Z
dc.date.issued2021-12-20
dc.identifier.citationFang, Yuexin; Zhang, Baqun; Zhang, Min (2021). "Robust method for optimal treatment decision making based on survival data." Statistics in Medicine 40(29): 6558-6576.
dc.identifier.issn0277-6715
dc.identifier.issn1097-0258
dc.identifier.urihttps://hdl.handle.net/2027.42/171005
dc.publisherCRC Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroptimal treatment regime
dc.subject.othersubgroup identification
dc.subject.othervariable selection
dc.subject.otheraugmented inverse probability weighted estimator
dc.subject.otherdecision rule
dc.subject.otherdoubly robust
dc.titleRobust method for optimal treatment decision making based on survival data
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171005/1/sim9198-sup-0001-supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171005/2/sim9198.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171005/3/sim9198_am.pdf
dc.identifier.doi10.1002/sim.9198
dc.identifier.sourceStatistics in Medicine
dc.identifier.citedreferenceKomárek A, Komárek MA. Package "smoothSurv"; 2020.
dc.identifier.citedreferenceImai K, Ratkovic M. Estimating treatment effect heterogeneity in randomized program evaluation. Ann Appl Stat. 2013; 7 ( 1 ): 443 ‐ 470.
dc.identifier.citedreferenceMurphy SA. Optimal dynamic treatment regimes. J Royal Stat Soc Ser B (Stat Methodol). 2003; 65 ( 2 ): 331 ‐ 355.
dc.identifier.citedreferenceWatkins CJ, Dayan P. Q‐learning. Mach Learn. 1992; 8 ( 3‐4 ): 279 ‐ 292.
dc.identifier.citedreferenceMoodie EE, Platt RW, Kramer MS. Estimating response‐maximized decision rules with applications to breastfeeding. J Am Stat Assoc. 2009; 104 ( 485 ): 155 ‐ 165.
dc.identifier.citedreferenceCai T, Tian L, Wong PH, Wei L. Analysis of randomized comparative clinical trial data for personalized treatment selections. Biostatistics. 2011; 12 ( 2 ): 270 ‐ 282.
dc.identifier.citedreferenceSchulte PJ, Tsiatis AA, Laber EB, Davidian M. Q‐and A‐learning methods for estimating optimal dynamic treatment regimes. Stat Sci Rev J Inst Math Stat. 2014; 29 ( 4 ): 640.
dc.identifier.citedreferenceTsiatis AA. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine. Boca Raton, FL: CRC Press; 2019.
dc.identifier.citedreferenceTian L, Alizadeh AA, Gentles AJ, Tibshirani R. A simple method for estimating interactions between a treatment and a large number of covariates. J Am Stat Assoc. 2014; 109 ( 508 ): 1517 ‐ 1532.
dc.identifier.citedreferenceLu W, Zhang HH, Zeng D. Variable selection for optimal treatment decision. Stat Methods Med Res. 2013; 22 ( 5 ): 493 ‐ 504.
dc.identifier.citedreferenceGeng Y, Zhang HH, Lu W. On optimal treatment regimes selection for mean survival time. Stat Med. 2015; 34 ( 7 ): 1169 ‐ 1184.
dc.identifier.citedreferenceGoldberg Y, Kosorok MR. Q‐learning with censored data. Ann Stat. 2012; 40 ( 1 ): 529.
dc.identifier.citedreferenceBai X, Tsiatis AA, Lu W, Song R. Optimal treatment regimes for survival endpoints using a locally‐efficient doubly‐robust estimator from a classification perspective. Lifetime Data Anal. 2017; 23 ( 4 ): 585 ‐ 604.
dc.identifier.citedreferenceJiang R, Lu W, Song R, Davidian M. On estimation of optimal treatment regimes for maximizing t‐year survival probability. J Royal Stat Soc Ser B (Stat Methodol). 2017; 79 ( 4 ): 1165 ‐ 1185.
dc.identifier.citedreferenceHager R, Tsiatis AA, Davidian M. Optimal two‐stage dynamic treatment regimes from a classification perspective with censored survival data. Biometrics. 2018; 74 ( 4 ): 1180 ‐ 1192.
dc.identifier.citedreferenceSimoneau G, Moodie EE, Nijjar JS, Platt RW. Investigators SERAIC, others. Estimating optimal dynamic treatment regimes with survival outcomes. J Am Stat Assoc. 2020; 115 ( 531 ): 1531 ‐ 1539.
dc.identifier.citedreferenceZhang B, Tsiatis AA, Laber EB, Davidian M. A robust method for estimating optimal treatment regimes. Biometrics. 2012; 68 ( 4 ): 1010 ‐ 1018.
dc.identifier.citedreferenceZhang B, Tsiatis AA, Davidian M, Zhang M, Laber E. Estimating optimal treatment regimes from a classification perspective. Stat. 2012; 1 ( 1 ): 103 ‐ 114.
dc.identifier.citedreferenceRobins JM. Optimal structural nested models for optimal sequential decisions. Paper presented at: Proceedings of the 2nd Seattle Symposium in Biostatistics; 2004:189‐326; Springer, New York, NY.
dc.identifier.citedreferenceKomárek A, Lesaffre E, Hilton JF. Accelerated failure time model for arbitrarily censored data with smoothed error distribution. J Comput Graph Stat. 2005; 14 ( 3 ): 726 ‐ 745.
dc.identifier.citedreferenceKhan MHR, Shaw JEH. Variable selection for survival data with a class of adaptive elastic net techniques. Stat Comput. 2016; 26 ( 3 ): 725 ‐ 741.
dc.identifier.citedreferenceStefanski LA, Boos DD. The calculus of M‐estimation. Am Stat. 2002; 56 ( 1 ): 29 ‐ 38.
dc.identifier.citedreferenceZhang Y, Laber EB, Davidian M, Tsiatis AA. Interpretable dynamic treatment regimes. J Am Stat Assoc. 2018; 113 ( 524 ): 1541 ‐ 1549.
dc.identifier.citedreferenceZhang M, Tsiatis AA, Davidian M. Improving efficiency of inferences in randomized clinical trials using auxiliary covariates. Biometrics. 2008; 64 ( 3 ): 707 ‐ 715.
dc.identifier.citedreferenceLuedtke AR, Van Der Laan MJ. Statistical inference for the mean outcome under a possibly non‐unique optimal treatment strategy. Ann Stat. 2016; 44 ( 2 ): 713.
dc.identifier.citedreferenceShi C, Lu W, Song R. Breaking the curse of nonregularity with subagging—inference of the mean outcome under optimal treatment regimes. J Mach Learn Res. 2020; 21 ( 176 ): 1 ‐ 67.
dc.identifier.citedreferenceWager S, Athey S. Estimation and inference of heterogeneous treatment effects using random forests. J Am Stat Assoc. 2018; 113 ( 523 ): 1228 ‐ 1242.
dc.identifier.citedreferenceDavison A. Treatment effect heterogeneity in paired data. Biometrika. 1992; 79 ( 3 ): 463 ‐ 474.
dc.identifier.citedreferenceGail M, Simon R. Testing for qualitative interactions between treatment effects and patient subsets. Biometrics. 1985; 41: 361 ‐ 372.
dc.identifier.citedreferenceLagakos SW. The challenge of subgroup analyses‐reporting without distorting. N Engl J Med. 2006; 354 ( 16 ): 1667.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.