Show simple item record

Halogen Bonding Propensity in Solution: Direct Observation and Computational Prediction

dc.contributor.authorBramlett, Taylor A.
dc.contributor.authorMatzger, Adam J.
dc.date.accessioned2021-12-02T02:30:35Z
dc.date.available2022-12-01 21:30:34en
dc.date.available2021-12-02T02:30:35Z
dc.date.issued2021-11-05
dc.identifier.citationBramlett, Taylor A.; Matzger, Adam J. (2021). "Halogen Bonding Propensity in Solution: Direct Observation and Computational Prediction." Chemistry – A European Journal 27(62): 15472-15478.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/171007
dc.description.abstractHalogen‐bonded complexes are often designed by consideration of electrostatic potential (ESP) predictions. ESP predictions do not capture the myriad variables associated with halogen bond (XB) donors and acceptors; thus, binding interaction cannot be quantitatively predicted. Here, a discrepancy between predictions based on ESP energy difference (ΔVs) and computed gas phase binding energy (ΔEbind) motivated the experimental determination of the relative strength of halogen bonding interactions in solution by Raman spectroscopic observation of complexes formed from interacting five iodobenzene‐derived XB donors and four pyridine XB acceptors. Evaluation of ΔEbind coupled with absolutely‐localized molecular orbital energy decomposition analysis (ALMO‐EDA) deconvolutes halogen bonding energy contributions and reveals a prominent role for charge transfer (CT) interactions. Raman spectra reveal ΔEbind accurately predicts stronger interactions within iodopentafluorobenzene (IPFB) complexes than with 1‐iodo‐3,5‐dinitrobenzene (IDNB) complexes even though IPFB has similar electrostatics to IDNB and contains a smaller σ‐hole.Strongly activated halogen bond donors give rise to observable bound and unbound states in Raman spectroscopy when paired with good halogen bond acceptors. The two strongest halogen bond donors examined have almost identical electrostatic potentials, but differ vastly in theoretical binding affinity and experimental halogen bonding strength. The energy terms giving rise to this behavior are elucidated by energy decomposition analysis.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherRaman spectroscopy
dc.subject.otherdensity functional calculations
dc.subject.otherhalogen bonding
dc.subject.othernoncovalent interactions
dc.subject.othersolution phase
dc.titleHalogen Bonding Propensity in Solution: Direct Observation and Computational Prediction
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171007/1/chem202102522.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171007/2/chem202102522_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171007/3/chem202102522-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/chem.202102522
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceJ. Yang, B. Hong, N. Wang, X. Li, X. Huang, Y. Bao, C. Xie, H. Hao, CrystEngComm 2019, 21, 6374 – 6381.
dc.identifier.citedreferenceJ. Heidrich, T. E. Exner, F. M. Boeckler, J. Chem. Inf. Model. 2019, 59, 636 – 643.
dc.identifier.citedreferenceP. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem. Int. Ed. 2008, 47, 6114 – 6127; Angew. Chem. 2008, 120, 6206 – 6220.
dc.identifier.citedreferenceM. Erdélyi, Chem. Soc. Rev. 2012, 41, 3547 – 3557.
dc.identifier.citedreferenceT. Clark, M. Hennemann, J. S. Murray, P. Politzer, J. Mol. Model. 2007, 13, 291 – 296.
dc.identifier.citedreferenceP. Politzer, J. S. Murray, T. Clark, Phys. Chem. Chem. Phys. 2010, 12, 7748 – 7757.
dc.identifier.citedreferenceG. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478 – 2601.
dc.identifier.citedreferenceP. Politzer, J. S. Murray, T. Clark, Phys. Chem. Chem. Phys. 2013, 15, 11178 – 11189.
dc.identifier.citedreferenceJ. S. Murray, P. Lane, P. Politzer, J. Mol. Model. 2009, 15, 723 – 729.
dc.identifier.citedreferenceJ. S. Murray, P. Politzer, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 153 – 163.
dc.identifier.citedreferenceJ. S. Murray, P. Politzer, J. Mol. Struct: THEOCHEM 1998, 425, 107 – 114.
dc.identifier.citedreferenceK. B. Landenberger, A. J. Matzger, Cryst. Growth Des. 2010, 10, 5341 – 5347.
dc.identifier.citedreferenceP. Politzer, J. S. Murray, T. Clark, G. Resnati, Phys. Chem. Chem. Phys. 2017, 19, 32166 – 32178.
dc.identifier.citedreferenceN. R. Goud, O. Bolton, E. C. Burgess, A. J. Matzger, Cryst. Growth Des. 2016, 16, 1765 – 1771.
dc.identifier.citedreferenceM. D. Perera, J. Desper, A. S. Sinha, C. B. Aakeröy, CrystEngComm 2016, 18, 8631 – 8636.
dc.identifier.citedreferenceC. A. Gunawardana, C. B. Aakeröy, Chem. Commun. 2018, 54, 14047 – 14060.
dc.identifier.citedreferenceA. Bauzá, D. Quiñonero, A. Frontera, P. M. Deyá, Phys. Chem. Chem. Phys. 2011, 13, 20371 – 20379.
dc.identifier.citedreferenceR. A. Wiscons, V. Coropceanu, A. J. Matzger, Chem. Mater. 2019, 31, 6598 – 6604.
dc.identifier.citedreferenceT. M. Beale, M. G. Chudzinski, M. G. Sarwar, M. S. Taylor, Chem. Soc. Rev. 2013, 42, 1667 – 1680.
dc.identifier.citedreferenceC. B. Aakeröy, T. K. Wijethunga, J. Desper, J. Mol. Struct. 2014, 1072, 20 – 27.
dc.identifier.citedreferenceB. A. DeHaven, A. L. Chen, E. A. Shimizu, S. R. Salpage, M. D. Smith, L. S. Shimizu, Cryst. Growth Des. 2019, 19, 5776 – 5783.
dc.identifier.citedreferenceC. B. Aakeröy, T. K. Wijethunga, J. Desper, M. Đaković, Cryst. Growth Des. 2016, 16, 2662 – 2670.
dc.identifier.citedreferenceC. B. Aakeröy, P. D. Chopade, J. Desper, Cryst. Growth Des. 2013, 13, 4145 – 4150.
dc.identifier.citedreferenceT. Clark, WIREs Comput. Mol. Sci. 2013, 3, 13 – 20.
dc.identifier.citedreferenceG. R. Desiraju, P. S. Ho, L. Kloo, A. C. Legon, R. Marquardt, P. Metrangolo, P. Politzer, G. Resnati, K. Rissanen, Pure Appl. Chem. 2013, 85, 1711 – 1713.
dc.identifier.citedreferenceA. J. Stone, J. Am. Chem. Soc. 2013, 135, 7005 – 7009.
dc.identifier.citedreferenceS. Kozuch, J. M. L. Martin, J. Chem. Theory Comput. 2013, 9, 1918 – 1931.
dc.identifier.citedreferenceY. Lu, H. Li, X. Zhu, H. Liu, W. Zhu, Int. J. Quantum Chem. 2012, 112, 1421 – 1430.
dc.identifier.citedreferenceY. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. D. Jr, H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, E. Neuscamman, C. M. Oana, R. Olivares-Amaya, D. P. O’Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein, D. Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, V. Vanovschi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard III, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer III, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. V. Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, M. Head-Gordon, Mol. Phys. 2015, 113, 184 – 215.
dc.identifier.citedreferenceJ. Thirman, E. Engelage, S. M. Huber, M. Head-Gordon, Phys. Chem. Chem. Phys. 2018, 20, 905 – 915.
dc.identifier.citedreferenceR. Wilcken, M. O. Zimmermann, A. Lange, A. C. Joerger, F. M. Boeckler, J. Med. Chem. 2013, 56, 1363 – 1388.
dc.identifier.citedreferenceH. Fan, J. K. Eliason, C. D. Moliva A., J. L. Olson, S. M. Flancher, M. W. Gealy, D. J. Ulness, J. Phys. Chem. A 2009, 113, 14052–14059.
dc.identifier.citedreferenceB. Hawthorne, H. Fan-Hagenstein, E. Wood, J. Smith, T. Hanks, Int. J. Spectrosc. 2013, 2013, 1 – 10.
dc.identifier.citedreferenceC. Präsang, A. C. Whitwood, D. W. Bruce, Cryst. Growth Des. 2009, 9, 5319 – 5326.
dc.identifier.citedreferenceA. Siiskonen, A. Priimagi, J. Mol. Model. 2017, 23, 50.
dc.identifier.citedreferenceL. P. Wolters, P. Schyman, M. J. Pavan, W. L. Jorgensen, F. M. Bickelhaupt, S. Kozuch, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 523 – 540.
dc.identifier.citedreferenceD. Musumeci, C. A. Hunter, R. Prohens, S. Scuderi, J. F. McCabe, Chem. Sci. 2011, 2, 883 – 890.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.