Show simple item record

Factors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient

dc.contributor.authorOzersky, Ted
dc.contributor.authorCamilleri, Andrew
dc.date.accessioned2021-12-02T02:30:51Z
dc.date.available2023-01-01 21:30:50en
dc.date.available2021-12-02T02:30:51Z
dc.date.issued2021-12
dc.identifier.citationOzersky, Ted; Camilleri, Andrew (2021). "Factors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient." Freshwater Biology (12): 2338-2350.
dc.identifier.issn0046-5070
dc.identifier.issn1365-2427
dc.identifier.urihttps://hdl.handle.net/2027.42/171015
dc.description.abstractBecause of the historical focus of limnology on pelagic processes, the factors controlling lake periphyton growth and nutrient limitation are understudied compared to the phytoplankton.We deployed nutrient‐diffusing substrata at 28 sites spanning a wide trophic status gradient in Lakes Superior and Michigan to assess periphyton biomass accrual on control substrata and the response of periphyton to single and combined phosphorus (P) and nitrogen (N) additions.Periphyton growth was unimodally related to a composite metric of site trophic status, with highest biomass at mesotrophic sites and lower growth at oligotrophic and highly eutrophic sites. Contrary to expectations, P limitation was rare. Instead, several lines of evidence pointed to primary N or N + P co‐limitation of periphyton. Limitation extent was negatively related to site trophic status, with stronger nutrient limitation at oligotrophic sites.Our results support the hypothesis that phytoplankton and periphyton biomass respond differently to nutrient enrichment and suggest that different nutrients may limit pelagic and benthic primary production, even in the same system.Our findings also support the use of periphyton as an early warning indicator of nutrient pollution and help explain why large, oligotrophic lakes may be especially susceptible to localised benthic algal blooms.
dc.publisherJohn Wiley & Sons Ltd.
dc.subject.othereutrophication
dc.subject.otherbenthic algae
dc.subject.otherLaurentian Great Lakes
dc.subject.othernitrogen
dc.subject.otherphosphorus
dc.titleFactors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171015/1/fwb13836.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171015/2/fwb13836_am.pdf
dc.identifier.doi10.1111/fwb.13836
dc.identifier.sourceFreshwater Biology
dc.identifier.citedreferenceRen, Z., Niu, D., Ma, P., Wang, Y., Fu, H., & Elser, J. J. ( 2019 ). Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams. Ecology, 100 ( 8 ), e02755. https://doi.org/10.1002/ecy.2755
dc.identifier.citedreferenceSanches, L. F., Guariento, R. D., Caliman, A., Bozelli, R. L., & Esteves, F. A. ( 2011 ). Effects of nutrients and light on periphytic biomass and nutrient stoichiometry in a tropical black‐water aquatic ecosystem. Hydrobiologia, 669 ( 1 ), 35 – 44. https://doi.org/10.1007/s10750‐011‐0661‐0
dc.identifier.citedreferenceSchindler, D. W. ( 1978 ). Factors regulating phytoplankton production and standing crop in the world’s freshwaters. Limnology and Oceanography, 23 ( 3 ), 478 – 486. https://doi.org/10.4319/lo.1978.23.3.0478
dc.identifier.citedreferenceSchindler, D. W., Carpenter, S. R., Chapra, S. C., Hecky, R. E., & Orihel, D. M. ( 2016 ). Reducing phosphorus to curb lake eutrophication is a success. Environmental Science & Technology, 50 ( 17 ), 8923 – 8929. https://doi.org/10.1021/acs.est.6b02204
dc.identifier.citedreferenceScott, J. T., Lang, D. A., King, R. S., & Doyle, R. D. ( 2009 ). Nitrogen fixation and phosphatase activity in periphyton growing on nutrient diffusing substrata: Evidence for differential nutrient limitation in stream periphyton. Journal of the North American Benthological Society, 28 ( 1 ), 57 – 68. https://doi.org/10.1899/07‐107.1
dc.identifier.citedreferenceSierszen, M. E., Hrabik, T. R., Stockwell, J. D., Cotter, A. M., Hoffman, J. C., & Yule, D. L. ( 2014 ). Depth gradients in food‐web processes linking habitats in large lakes: Lake Superior as an exemplar ecosystem. Freshwater Biology, 59 ( 10 ), 2122 – 2136. https://doi.org/10.1111/fwb.12415
dc.identifier.citedreferenceSteinman, A., Abdimalik, M., Ogdahl, M. E., & Oudsema, M. ( 2016 ). Understanding planktonic vs. benthic algal response to manipulation of nutrients and light in a eutrophic lake. Lake and Reservoir Management, 32 ( 4 ), 402 – 409.
dc.identifier.citedreferenceSteinman, A. D., Lamberti, G. A., & Leavitt, P. R. ( 2006 ). Biomass and pigments of benthic algae. In F. R. Hauer & G. A. Lamberti (Eds.), Methods in stream ecology ( 2 nd ed., pp. 357 – 379 ). Academic Press.
dc.identifier.citedreferenceSterner, R. W. ( 2011 ). C: N: P stoichiometry in Lake Superior: Freshwater sea as end member. Inland Waters, 1 ( 1 ), 29 – 46. https://doi.org/10.5268/IW‐1.1.365
dc.identifier.citedreferenceSterner, R. W., Smutka, T. M., McKay, R. M. L., Xiaoming, Q., Brown, E. T., & Sherrell, R. M. ( 2004 ). Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnology and Oceanography, 49 ( 2 ), 495 – 507. https://doi.org/10.4319/lo.2004.49.2.0495
dc.identifier.citedreferenceStoermer, E. F., Ladewski, B. G., & Schelske, C. L. ( 1978 ). Population responses of Lake Michigan phytoplankton to nitrogen and phosphorus enrichment. Hydrobiologia, 57 ( 3 ), 249 – 265. https://doi.org/10.1007/BF00014579
dc.identifier.citedreferenceTank, J. L., Bernot, M. J., & Rosi‐Marshall, E. J. ( 2006 ). Nitrogen limitation and uptake. In F. R. Hauer & G. A. Lamberti (Eds.), Methods in stream ecology ( 2 nd ed., pp. 213 – 238 ). Academic Press.
dc.identifier.citedreferenceTimoshkin, O. A., Samsonov, D. P., Yamamuro, M., Moore, M. V., Belykh, O. I., Malnik, V. V., … Bukshuk, N. A. ( 2016 ). Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world’s greatest freshwater biodiversity in danger? Journal of Great Lakes Research, 42 ( 3 ), 487 – 497. https://doi.org/10.1016/j.jglr.2016.02.011
dc.identifier.citedreferenceTriska, F. J., & Oremland, R. S. ( 1981 ). Denitrification associated with periphyton communities. Applied and Environmental Microbiology, 42 ( 4 ), 745 – 748. https://doi.org/10.1128/aem.42.4.745‐748.1981
dc.identifier.citedreferenceTrochine, C., Guerrieri, M. E., Liboriussen, L., Lauridsen, T. L., & Jeppesen, E. ( 2014 ). Effects of nutrient loading, temperature regime and grazing pressure on nutrient limitation of periphyton in experimental ponds. Freshwater Biology, 59 ( 5 ), 905 – 917. https://doi.org/10.1111/fwb.12314
dc.identifier.citedreferenceVadeboncoeur, Y., Moore, M. V., Stewart, S. D., Chandra, S., Atkins, K. A., Baron, J. S., … Yamamuro, M. ( 2021 ). Blue waters, green bottoms: Benthic filamentous algal blooms are an emerging threat to clear lakes worldwide. BioScience, 71 ( 20 ), biab049. https://doi.org/10.1093/biosci/biab049
dc.identifier.citedreferenceVadeboncoeur, Y., Peterson, G., Vander Zanden, M. J., & Kalff, J. ( 2008 ). Benthic algal production across lake size gradients: Interactions among morphometry, nutrients, and light. Ecology, 89 ( 9 ), 2542 – 2552. https://doi.org/10.1890/07‐1058.1
dc.identifier.citedreferenceVadeboncoeur, Y., Vander Zanden, M. J., & Lodge, D. M. ( 2002 ). Putting the lake back together: Reintegrating benthic pathways into lake food web models. BioScience, 52 ( 1 ), 44 – 54.
dc.identifier.citedreferenceVander Zanden, M. J., & Vadeboncoeur, Y. ( 2002 ). Fishes as integrators of benthic and pelagic food webs in lakes. Ecology, 83 ( 8 ), 2152 – 2161. https://doi.org/10.2307/3072047
dc.identifier.citedreferenceVizza, C., Pechal, J. L., Benbow, M. E., Lang, J. M., Chaloner, D. T., Jones, S. E., & Lamberti, G. A. ( 2018 ). Nitrate amendment reduces biofilm biomass and shifts microbial communities in remote, oligotrophic ponds. Freshwater Science, 37 ( 2 ), 251 – 263. https://doi.org/10.1086/697897
dc.identifier.citedreferencevon Schiller, D., Martí, E., Riera, J. L., & Sabater, F. ( 2007 ). Effects of nutrients and light on periphyton biomass and nitrogen uptake in Mediterranean streams with contrasting land uses. Freshwater Biology, 52 ( 5 ), 891 – 906. https://doi.org/10.1111/j.1365‐2427.2007.01742.x
dc.identifier.citedreferenceYoung, O. W. ( 1945 ). A limnological investigation of periphyton in Douglas Lake, Michigan. Transactions of the American Microscopical Society, 64 ( 1 ), 1 – 20. https://doi.org/10.2307/3223433
dc.identifier.citedreferenceCooper, M. J., Costello, G. M., Francoeur, S. N., & Lamberti, G. A. ( 2016 ). Nitrogen limitation of algal biofilms in coastal wetlands of Lakes Michigan and Huron. Freshwater Science, 35 ( 1 ), 25 – 40. https://doi.org/10.1086/684646
dc.identifier.citedreferenceBaulch, H. M., Turner, M. A., Findlay, D. L., Vinebrooke, R. D., & Donahue, W. F. ( 2009 ). Benthic algal biomass—measurement and errors. Canadian Journal of Fisheries and Aquatic Sciences, 66 ( 11 ), 1989 – 2001.
dc.identifier.citedreferenceBechtold, H. A., Marcarelli, A. M., Baxter, C. V., & Inouye, R. S. ( 2012 ). Effects of N, P, and organic carbon on stream biofilm nutrient limitation and uptake in a semi‐arid watershed. Limnology and Oceanography, 57 ( 5 ), 1544 – 1554. https://doi.org/10.4319/lo.2012.57.5.1544
dc.identifier.citedreferenceBeck, W. S., & Hall, E. K. ( 2018 ). Confounding factors in algal phosphorus limitation experiments. PLoS One, 13 ( 10 ), e0205684. https://doi.org/10.1371/journal.pone.0205684
dc.identifier.citedreferenceBelykh, O. I., Tikhonova, I. V., Kuzmin, A. V., Sorokovikova, E. G., Fedorova, G. A., Khanaev, I. V., … Timoshkin, O. A. ( 2016 ). First detection of benthic cyanobacteria in Lake Baikal producing paralytic shellfish toxins. Toxicon, 121, 36 – 40. https://doi.org/10.1016/j.toxicon.2016.08.015
dc.identifier.citedreferenceBerg, G. M., Balode, M., Purina, I., Bekere, S., Béchemin, C., & Maestrini, S. Y. ( 2003 ). Plankton community composition in relation to availability and uptake of oxidized and reduced nitrogen. Aquatic Microbial Ecology, 30 ( 3 ), 263 – 274. https://doi.org/10.3354/ame030263
dc.identifier.citedreferenceBernhardt, E. S., & Likens, G. E. ( 2004 ). Controls on periphyton biomass in heterotrophic streams. Freshwater Biology, 49 ( 1 ), 14 – 27. https://doi.org/10.1046/j.1365‐2426.2003.01161.x
dc.identifier.citedreferenceBonilla, S., Villeneuve, V., & Vincent, W. F. ( 2005 ). Benthic and planktonic algal communities in a high arctic lake: Pigment structure and contrasting responses to nutrient enrichment. Journal of Phycology, 41 ( 6 ), 1120 – 1130.
dc.identifier.citedreferenceCamilleri, A. C., & Ozersky, T. ( 2019 ). Large variation in periphyton δ 13 C and δ 15 N values in the upper Great Lakes: Correlates and implications. Journal of Great Lakes Research, 45 ( 5 ), 986 – 990. https://doi.org/10.1016/j.jglr.2019.06.003
dc.identifier.citedreferenceCamilleri, A. C., & Ozersky, T. ( 2021 ). Dataset for factors regulating lake periphyton biomass and nutrient limitation status across large trophic gradient. Retrieved from the Data Repository for the University of Minnesota, https://doi.org/10.13020/CWST‐SE85
dc.identifier.citedreferenceCapps, K. A., Booth, M. T., Collins, S. M., Davison, M. A., Moslemi, J. M., El‐Sabaawi, R. W., … Flecker, A. S. ( 2011 ). Nutrient diffusing substrata: A field comparison of commonly used methods to assess nutrient limitation. Journal of the North American Benthological Society, 30 ( 2 ), 522 – 532. https://doi.org/10.1899/10‐146.1
dc.identifier.citedreferenceCarlson, R. E. ( 1977 ). A trophic state index for lakes. Limnology and Oceanography, 22 ( 2 ), 361 – 369.
dc.identifier.citedreferenceCarpenter, E. J., & Dunham, S. ( 1985 ). Nitrogenous nutrient uptake, primary production, and species composition of phytoplankton in the Carmans River estuary, Long Island, New York. Limnology and Oceanography, 30 ( 3 ), 513 – 526.
dc.identifier.citedreferenceCarrick, H. J., & Lowe, R. L. ( 1988 ). Response of Lake Michigan benthic algae to in situ enrichment with Si, N, and P. Canadian Journal of Fisheries and Aquatic Sciences, 45 ( 2 ), 271 – 279. https://doi.org/10.1139/f88‐032
dc.identifier.citedreferenceCarrick, H. J., & Lowe, R. L. ( 2007 ). Nutrient limitation of benthic algae in Lake Michigan: The role of silica. Journal of Phycology, 43 ( 2 ), 228 – 234. https://doi.org/10.1111/j.1529‐8817.2007.00326.x
dc.identifier.citedreferenceCattaneo, A. ( 1987 ). Periphyton in lakes of different trophy. Canadian Journal of Fisheries and Aquatic Sciences, 44 ( 2 ), 296 – 303. https://doi.org/10.1139/f87‐038
dc.identifier.citedreferenceCattaneo, A. ( 1990 ). The effect of fetch on periphyton spatial variation. Hydrobiologia, 206 ( 1 ), 1 – 10. https://doi.org/10.1007/BF00018964
dc.identifier.citedreferenceChun, C. L., Ochsner, U., Byappanahalli, M. N., Whitman, R. L., Tepp, W. H., Lin, G., … Sadowsky, M. J. ( 2013 ). Association of toxin‐producing Clostridium botulinum with the macroalga Cladophora in the Great Lakes. Environmental Science & Technology, 47 ( 6 ), 2587 – 2594.
dc.identifier.citedreferenceCrawley, M. J. ( 2013 ). The R book ( 2 nd ed.). John Wiley & Sons Ltd.
dc.identifier.citedreferenceDeNicola, D. M., & Kelly, M. ( 2014 ). Role of periphyton in ecological assessment of lakes. Freshwater Science, 33 ( 2 ), 619 – 638. https://doi.org/10.1086/676117
dc.identifier.citedreferenceDodds, W. K., & Gudder, D. A. ( 1992 ). The ecology of Cladophora. Journal of Phycology, 28 ( 4 ), 415 – 427. https://doi.org/10.1111/j.0022‐3646.1992.00415.x
dc.identifier.citedreferenceElser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., … Smith, J. E. ( 2007 ). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10 ( 12 ), 1135 – 1142. https://doi.org/10.1111/j.1461‐0248.2007.01113.x
dc.identifier.citedreferenceFerragut, C., & de Campos Bicudo, D. ( 2010 ). Periphytic algal community adaptive strategies in N and P enriched experiments in a tropical oligotrophic reservoir. Hydrobiologia, 646 ( 1 ), 295 – 309. https://doi.org/10.1007/s10750‐010‐0168‐0
dc.identifier.citedreferenceFork, M. L., Karlsson, J., & Sponseller, R. A. ( 2020 ). Dissolved organic matter regulates nutrient limitation and growth of benthic algae in northern lakes through interacting effects on nutrient and light availability. Limnology and Oceanography Letters, 5 ( 6 ), 417 – 424. https://doi.org/10.1002/lol2.10166
dc.identifier.citedreferenceFrancoeur, S. N. ( 2001 ). Meta‐analysis of lotic nutrient amendment experiments: Detecting and quantifying subtle responses. Journal of the North American Benthological Society, 20 ( 3 ), 358 – 368. https://doi.org/10.2307/1468034
dc.identifier.citedreferenceFrancoeur, S. N., Pillsbury, R. W., & Lowe, R. L. ( 2015 ). Benthic algal response to invasive mussels in Saginaw Bay: A comparison of historical and recent data. Journal of Freshwater Ecology, 30 ( 4 ), 463 – 477. https://doi.org/10.1080/02705060.2014.1001452
dc.identifier.citedreferenceGladyshev, M. I., & Gubelit, Y. I. ( 2019 ). Green tides: New consequences of the eutrophication of natural waters (invited review). Contemporary Problems of Ecology, 12 ( 2 ), 109 – 125. https://doi.org/10.1134/S1995425519020057
dc.identifier.citedreferenceGuildford, S. J., Bootsma, H. A., Fee, E. J., Hecky, R. E., & Patterson, G. ( 2000 ). Phytoplankton nutrient status and mean water column irradiance in Lakes Malawi and Superior. Aquatic Ecosystem Health & Management, 3 ( 1 ), 35 – 45. https://doi.org/10.1080/14634980008656989
dc.identifier.citedreferenceHagerthey, S. E., William Louda, J., & Mongkronsri, P. ( 2006 ). Evaluation of pigment extraction methods and a recommended protocol for periphyton chlorophyll a determination and chemotaxonomic assessment. Journal of Phycology, 42 ( 5 ), 1125 – 1136. https://doi.org/10.1111/j.1529‐8817.2006.00257.x
dc.identifier.citedreferenceHansson, L. A. ( 1992 ). Factors regulating periphytic algal biomass. Limnology and Oceanography, 37 ( 2 ), 322 – 328. https://doi.org/10.4319/lo.1992.37.2.0322
dc.identifier.citedreferenceHarpole, W. S., Ngai, J. T., Cleland, E. E., Seabloom, E. W., Borer, E. T., Bracken, M. E. S., … Smith, J. E. ( 2011 ). Nutrient co‐limitation of primary producer communities. Ecology Letters, 14 ( 9 ), 852 – 862. https://doi.org/10.1111/j.1461‐0248.2011.01651.x
dc.identifier.citedreferenceHavens, K. E., East, T. L., Meeker, R. H., Davis, W. P., & Steinman, A. D. ( 1996 ). Phytoplankton and periphyton responses to in situ experimental nutrient enrichment in a shallow subtropical lake. Journal of Plankton Research, 18 ( 4 ), 551 – 566.
dc.identifier.citedreferenceHavens, S. M., Hassler, C. S., North, R. L., Guildford, S. J., Silsbe, G., Wilhelm, S. W., & Twiss, M. R. ( 2012 ). Iron plays a role in nitrate drawdown by phytoplankton in Lake Erie surface waters as observed in lake‐wide assessments. Canadian Journal of Fisheries and Aquatic Sciences, 69 ( 2 ), 369 – 381. https://doi.org/10.1139/f2011‐157
dc.identifier.citedreferenceHealey, F. P. ( 1975 ). Physiological indicators of nutrient deficiency in algae. Environment Canada, Fisheries and Marine Service, Technical Report no. 585, 1‐30.
dc.identifier.citedreferenceHecky, R. E., & Hesslein, R. H. ( 1995 ). Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society, 14 ( 4 ), 631 – 653. https://doi.org/10.2307/1467546
dc.identifier.citedreferenceHiggins, S. N., Howell, E. T., Hecky, R. E., Guildford, S. J., & Smith, R. E. ( 2005 ). The wall of green: The status of Cladophora glomerata on the northern shores of Lake Erie’s eastern basin, 1995–2002. Journal of Great Lakes Research, 31 ( 4 ), 547 – 563. https://doi.org/10.1016/S0380‐1330(05)70283‐5
dc.identifier.citedreferenceHillebrand, H., & Kahlert, M. ( 2001 ). Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnology and Oceanography, 46 ( 8 ), 1881 – 1898. https://doi.org/10.4319/lo.2001.46.8.1881
dc.identifier.citedreferenceHillebrand, H., & Sommer, U. ( 1999 ). The nutrient stoichiometry of benthic microalgal growth: Redfield proportions are optimal. Limnology and Oceanography, 44 ( 2 ), 440 – 446. https://doi.org/10.4319/lo.1999.44.2.0440
dc.identifier.citedreferenceIshida, C. K., Arnon, S., Peterson, C. G., Kelly, J. J., & Gray, K. A. ( 2008 ). Influence of algal community structure on denitrification rates in periphyton cultivated on artificial substrata. Microbial Ecology, 56 ( 1 ), 140 – 152. https://doi.org/10.1007/s00248‐007‐9332‐0
dc.identifier.citedreferenceIvanikova, N. V., McKay, R. M. L., Bullerjahn, G. S., & Sterner, R. W. ( 2007 ). Nitrate utilization by phytoplankton in Lake Superior is impaired by low nutrient (P, Fe) availability and seasonal light limitation—a cyanobacterial bioreporter study. Journal of Phycology, 43 ( 3 ), 475 – 484. https://doi.org/10.1111/j.1529‐8817.2007.00348.x
dc.identifier.citedreferenceKahle, D., & Wickham, H. ( 2013 ). ggmap: Spatial Visualization with ggplot2. The R Journal, 5 ( 1 ), 144 – 161. https://doi.org/10.32614/RJ‐2013‐014
dc.identifier.citedreferenceLambert, D., & Cattaneo, A. ( 2008 ). Monitoring periphyton in lakes experiencing shoreline development. Lake and Reservoir Management, 24 ( 2 ), 190 – 195. https://doi.org/10.1080/07438140809354060
dc.identifier.citedreferenceLambert, D., Cattaneo, A., & Carignan, R. ( 2008 ). Periphyton as an early indicator of perturbation in recreational lakes. Canadian Journal of Fisheries and Aquatic Sciences, 65 ( 2 ), 258 – 265. https://doi.org/10.1139/f07‐168
dc.identifier.citedreferenceLiboriussen, L., & Jeppesen, E. ( 2006 ). Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations. Freshwater Biology, 51 ( 1 ), 95 – 109. https://doi.org/10.1111/j.1365‐2427.2005.01481.x
dc.identifier.citedreferenceLin, C. K., & Schelske, C. L. ( 1981 ). Seasonal variation of potential nutrient limitation to chlorophyll production in southern Lake Huron. Canadian Journal of Fisheries and Aquatic Sciences, 38 ( 1 ), 1 – 9. https://doi.org/10.1139/f81‐001
dc.identifier.citedreferenceMaberly, S. C., King, L., Dent, M. M., Jones, R. I., & Gibson, C. E. ( 2002 ). Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshwater Biology, 47 ( 11 ), 2136 – 2152. https://doi.org/10.1046/j.1365‐2427.2002.00962.x
dc.identifier.citedreferenceMarchetti, A., Schruth, D. M., Durkin, C. A., Parker, M. S., Kodner, R. B., Berthiaume, C. T., … Armbrust, E. V. ( 2012 ). Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 6 ), E317 – E325. https://doi.org/10.1073/pnas.1118408109
dc.identifier.citedreferenceMillard, E. S., Myles, D. D., Johannsson, O. E., & Ralph, K. M. ( 1996 ). Seasonal phosphorus deficiency of Lake Ontario phytoplankton at two index stations: Light versus phosphorus limitation of growth. Canadian Journal of Fisheries and Aquatic Sciences, 53 ( 5 ), 1112 – 1124. https://doi.org/10.1139/f96‐030
dc.identifier.citedreferenceMulholland, P. J., Steinman, A. D., Marzolf, E. R., Hart, D. R., & DeAngelis, D. L. ( 1994 ). Effect of periphyton biomass on hydraulic characteristics and nutrient cycling in streams. Oecologia, 98 ( 1 ), 40 – 47. https://doi.org/10.1007/BF00326088
dc.identifier.citedreferenceNoe, G. B., Scinto, L. J., Taylor, J., Childers, D. L., & Jones, R. D. ( 2003 ). Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: A radioisotope tracing study. Freshwater Biology, 48 ( 11 ), 1993 – 2008. https://doi.org/10.1046/j.1365‐2427.2003.01143.x
dc.identifier.citedreferenceNorth, R. L., Guildford, S. J., Smith, R. E. H., Havens, S. M., & Twiss, M. R. ( 2007 ). Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnology and Oceanography, 52 ( 1 ), 315 – 328. https://doi.org/10.4319/lo.2007.52.1.0315
dc.identifier.citedreferenceOzersky, T., Barton, D. R., Hecky, R. E., & Guildford, S. J. ( 2013 ). Dreissenid mussels enhance nutrient efflux, periphyton quantity and production in the shallow littoral zone of a large lake. Biological Invasions, 15 ( 12 ), 2799 – 2810. https://doi.org/10.1007/s10530‐013‐0494‐z
dc.identifier.citedreferenceOzersky, T., Volkova, E. A., Bondarenko, N. A., Timoshkin, O. A., Malnik, V. V., Domysheva, V. M., & Hampton, S. E. ( 2018 ). Nutrient limitation of benthic algae in Lake Baikal, Russia. Freshwater Science, 37 ( 3 ), 472 – 482. https://doi.org/10.1086/699408
dc.identifier.citedreferencePaerl, H. W., Scott, T. J., McCarthy, M. J., Newell, S. E., Gardner, W. S., Havens, K. E., … Wurtsbaugh, W. A. ( 2016 ). It takes two to tango: When and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environmental Science & Technology, 50 ( 20 ), 10805 – 10813.
dc.identifier.citedreferenceParadis, E., & Schliep, K. ( 2019 ). ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526 – 528. https://doi.org/10.1093/bioinformatics/bty633
dc.identifier.citedreferenceQualls, T. M., Harris, H. J., & Harris, V. A. ( 2013 ). The State of Green Bay: The Condition of the Bay of Green Bay/Lake Michigan 2013. UW Sea Grant Institute/Water Resources Institute.
dc.identifier.citedreferenceQuinlan, R., Filazzola, A., Mahdiyan, O., Shuvo, A., Blagrave, K., Ewins, C., … Sharma, S. ( 2020 ). Relationships of total phosphorus and chlorophyll in lakes worldwide. Limnology and Oceanography, 66 ( 2 ), 392 – 404. https://doi.org/10.1002/lno.11611
dc.identifier.citedreferenceR Core Team. ( 2014 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
dc.identifier.citedreferenceReisinger, L. S., Pangle, K. L., Cooper, M. J., Learman, D. R., Woolnough, D. A., Bugaj, M. R., … Uzarski, D. G. ( 2019 ). Short‐term variability in coastal community and ecosystem dynamics in northern Lake Michigan. Freshwater Science, 38 ( 3 ), 661 – 673. https://doi.org/10.1086/704999
dc.identifier.citedreferenceRibot, M., von Schiller, D., Sabater, F., & Martí, E. ( 2015 ). Biofilm growth and nitrogen uptake responses to increases in nitrate and ammonium availability. Aquatic Sciences, 77 ( 4 ), 695 – 707. https://doi.org/10.1007/s00027‐015‐0412‐9
dc.identifier.citedreferenceRosenberger, E. E., Hampton, S. E., Fradkin, S. C., & Kennedy, B. P. ( 2008 ). Effects of shoreline development on the nearshore environment in large deep oligotrophic lakes. Freshwater Biology, 53 ( 8 ), 1673 – 1691. https://doi.org/10.1111/j.1365‐2427.2008.01990.x
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.