Show simple item record

Accounting for not‐at‐random missingness through imputation stacking

dc.contributor.authorBeesley, Lauren J.
dc.contributor.authorTaylor, Jeremy M. G.
dc.date.accessioned2021-12-02T02:31:00Z
dc.date.available2022-12-01 21:30:58en
dc.date.available2021-12-02T02:31:00Z
dc.date.issued2021-11-30
dc.identifier.citationBeesley, Lauren J.; Taylor, Jeremy M. G. (2021). "Accounting for not‐at‐random missingness through imputation stacking." Statistics in Medicine 40(27): 6118-6132.
dc.identifier.issn0277-6715
dc.identifier.issn1097-0258
dc.identifier.urihttps://hdl.handle.net/2027.42/171019
dc.description.abstractNot‐at‐random missingness presents a challenge in addressing missing data in many health research applications. In this article, we propose a new approach to account for not‐at‐random missingness after multiple imputation through weighted analysis of stacked multiple imputations. The weights are easily calculated as a function of the imputed data and assumptions about the not‐at‐random missingness. We demonstrate through simulation that the proposed method has excellent performance when the missingness model is correctly specified. In practice, the missingness mechanism will not be known. We show how we can use our approach in a sensitivity analysis framework to evaluate the robustness of model inference to different assumptions about the missingness mechanism, and we provide R package StackImpute to facilitate implementation as part of routine sensitivity analyses. We apply the proposed method to account for not‐at‐random missingness in human papillomavirus test results in a study of survival for patients diagnosed with oropharyngeal cancer.
dc.publisherJohn Wiley and Sons, Inc
dc.subject.otherstacked imputation
dc.subject.otherchained equations multiple imputation
dc.subject.otherfully conditional specification
dc.subject.othernot‐at‐random missingness
dc.subject.othersensitivity analysis
dc.titleAccounting for not‐at‐random missingness through imputation stacking
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171019/1/sim9174-sup-0001-supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171019/2/sim9174_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171019/3/sim9174.pdf
dc.identifier.doi10.1002/sim.9174
dc.identifier.sourceStatistics in Medicine
dc.identifier.citedreferenceWang N, Robins JM. Large‐sample theory for parametric multiple imputation procedures. Biometrika. 1998; 85 ( 4 ): 935 ‐ 948.
dc.identifier.citedreferenceRubin DB. Multiple Imputation for Nonresponse in Surveys. 1st ed. New York, NY: John Wiley and Sons, Inc; 1987.
dc.identifier.citedreferenceRaghunathan TE. A multivariate technique for multiply imputing missing values using a sequence of regression models. Surv Methodol. 2001; 27 ( 1 ): 85 ‐ 95.
dc.identifier.citedreferenceVan Buuren S, Brand JPL, Groothuis‐Oudshoorn CGM, Rubin DB. Fully conditional specification in multivariate imputation. J Stat Comput Simul. 2006; 76 ( 12 ): 1049 ‐ 1064.
dc.identifier.citedreferenceLittle RJA, Rubin DB. Statistical Analysis with Missing Data. 2nd ed. Hoboken, NJ: John Wiley and Sons, Inc; 2002.
dc.identifier.citedreferenceTompsett DM, Leacy F, Moreno‐Betancur M, Heron J, White IR. On the use of the not‐at‐random fully conditional specification (NARFCS) procedure in practice. Stat Med. 2018; 37 ( 15 ): 2338 ‐ 2353. https://doi.org/10.1002/sim.7643
dc.identifier.citedreferenceJolani S. Dual Imputation Strategies for Analyzing Incomplete Data PhD thesis. Utrecht University; 2012.
dc.identifier.citedreferenceCarpenter JR, Kenward MG, White IR. Sensitivity analysis after multiple imputation under missing at random: a weighting approach. Stat Methods Med Res. 2007; 16 ( 3 ): 259 ‐ 275.
dc.identifier.citedreferenceRezvan PH, White IR, Lee KJ, Carlin JB, Simpson JA. Evaluation of a weighting approach for performing sensitivity analysis after multiple imputation. BMC Med Res Methodol. 2015; 15 ( 83 ): 1 ‐ 16. https://doi.org/10.1186/s12874‐015‐0074‐2
dc.identifier.citedreferenceSmuk M. Missing Data Methodology: Sensitivity Analysis after Multiple Imputation PhD thesis. London School of Hygiene and Tropical Medicine; 2015.
dc.identifier.citedreferenceBeesley LJ, Taylor JMG. A stacked approach for chained equations multiple imputation incorporating the substantive model. Biometrics. 2020; 1 ‐ 13. https://doi.org/10.1111/biom.13372
dc.identifier.citedreferenceBernhardt P. A comparison of stacked and pooled multiple imputation. Paper presented at: Proceedings of the Joint Statistical Meetings Poster Presentation; 2019: Denver, Colorado, USA.
dc.identifier.citedreferenceTanner MA. Methods for the Exploration of Posterior Distributions and Likelihood Functions. 2nd ed. New York, NY: Springer; 1993.
dc.identifier.citedreferenceCarpenter JR, Roger JH, Kenward MG. Analysis of longitudinal trials with protocol deviation: a framework for relevant, accessible assumptions, and inference via multiple imputation. J Biopharm Stat. 2013; 23 ( 6 ): 1352 ‐ 1371. https://doi.org/10.1080/10543406.2013.834911
dc.identifier.citedreferenceWood AM, White IR, Royston P. How should variable selection be performed with multiply imputed data? Stat Med. 2008; 27: 3227 ‐ 3246.
dc.identifier.citedreferenceLouis TA. Finding the observed information matrix when using the EM algorithm. J R Stat Soc. 1982; 44 ( 2 ): 226 ‐ 233.
dc.identifier.citedreferenceRatitch B, Kelly MO, Tosiello R. Missing data in clinical trials: from clinical assumptions to statistical analysis using pattern mixture models. Pharm Stat. 2013; 12 ( 6 ): 337 ‐ 347. https://doi.org/10.1002/pst.1549
dc.identifier.citedreferenceTompsett D, Sutton S, Seaman SR, White IR. A general method for elicitation, imputation, and sensitivity analysis for incomplete repeated binary data. Stat Med. 2020; 39 ( 22 ): 2921 ‐ 2935. https://doi.org/10.1002/sim.8584
dc.identifier.citedreferenceRezvan PH, Lee KJ, Simpson JA. Sensitivity analysis within multiple imputation framework using delta‐adjustment: application to longitudinal study of Australian children. Longitud Life Course Stud. 2018; 9 ( 3 ): 259 ‐ 278.
dc.identifier.citedreferenceHéraud‐Bousquet V, Larsen C, Carpenter J, Desenclos JC, Strat YL. Practical considerations for sensitivity analysis after multiple imputation applied to epidemiological studies with incomplete data. BMC Med Res Methodol. 2012; 12 ( 73 ): 1 ‐ 11.
dc.identifier.citedreferenceBeesley LJ, Hawkins PG, Amlani LM, et al. Individualized survival prediction for patients with oropharyngeal cancer in the human papillomavirus era. Cancer. 2019; 125 ( 1 ): 69 ‐ 78.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.