Show simple item record

Magnetic Flux Circulation in the Saturnian Magnetosphere as Constrained by Cassini Observations in the Inner Magnetosphere

dc.contributor.authorLai, Hairong
dc.contributor.authorJia, Ying‐Dong
dc.contributor.authorRussell, Christopher T.
dc.contributor.authorJia, Xianzhe
dc.contributor.authorMasters, Adam
dc.contributor.authorDougherty, Michele K.
dc.contributor.authorCui, Jun
dc.date.accessioned2021-12-02T02:31:17Z
dc.date.available2022-12-01 21:31:16en
dc.date.available2021-12-02T02:31:17Z
dc.date.issued2021-11
dc.identifier.citationLai, Hairong; Jia, Ying‐Dong ; Russell, Christopher T.; Jia, Xianzhe; Masters, Adam; Dougherty, Michele K.; Cui, Jun (2021). "Magnetic Flux Circulation in the Saturnian Magnetosphere as Constrained by Cassini Observations in the Inner Magnetosphere." Journal of Geophysical Research: Space Physics 126(11): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/171026
dc.description.abstractIn steady state, magnetic flux conservation must be maintained in Saturn- s magnetosphere. The Enceladus plumes add mass to magnetic flux tubes in the inner magnetosphere, and centrifugal force pulls the mass- loaded flux tubes outward. Those flux tubes are carried outward to the magnetotail where they deposit their mass and return to the mass loading region. It may take days for the magnetic flux to be carried outward to the tail, but the return of the nearly empty flux tubes can last only several hours, with speeds of inward motion around 200 km/s. Using time sequences of Cassini particle count rate, the difference in curvature drift and gradient drift is accounted for to determine the return speed, age, and starting dipole L- shell of return flux tubes. Determination of this flux- return process improves our understanding of the magnetic flux circulation at Saturn and provides insight into how other giant planets remove the mass added by their moons.Key PointsTo determine the flux return process, the count rate distributions of ions/electrons inside a flux tube have been studiedWe use a stretched dipolar magnetosphere model and account for the difference in curvature and gradient driftWe estimate the starting dipole L shell of the return flux tubes to be greater than 45
dc.publisherWiley Periodicals, Inc.
dc.publisherNASA Planetary Data System
dc.titleMagnetic Flux Circulation in the Saturnian Magnetosphere as Constrained by Cassini Observations in the Inner Magnetosphere
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171026/1/jgra56837.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171026/2/jgra56837_am.pdf
dc.identifier.doi10.1029/2021JA029304
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceParanicas, C., Thomsen, M. F., Achilleos, B., Andriopoulou, M., Badman, S. V., Hospodarsky, G., et al. ( 2016 ). Effects of radial motion on interchange injections at Saturn. Icarus, 264, 342 - 351.
dc.identifier.citedreferenceDungey, J. W. ( 1963 ). The structure of the exosphere or adventures in velocity space. In C. De Witt, J. Heiblot, & L. Le Beau (Eds.), Geophysics, the Earth- s environment (pp. 503 ).
dc.identifier.citedreferenceHaggerty, D. K., Mauk, B. H., Paranicas, C. P., Clark, G., Kollmann, P., Rymer, A. M., et al. ( 2019 ). Jovian injections observed at high latitude. Geophysical Research Letters, 46, 9397 - 9404. https://doi.org/10.1029/2019GL083442
dc.identifier.citedreferenceHamlin, D. A., Karplus, R., Vik, R. C., & Watson, K. M. ( 1961 ). Mirror and azimuthal drift frequencies for geomagnetically trapped particles. Journal of Geophysical Research, 66 ( 1 ), 1 - 4. https://doi.org/10.1029/JZ066i001p00001
dc.identifier.citedreferenceHill, T. W. ( 2016 ). Penetration of external plasma into a rotation- driven magnetosphere. Journal of Geophysical Research: Space Physics, 121, 10032 - 10036. https://doi.org/10.1002/2016JA023430
dc.identifier.citedreferenceHill, T. W., Rymer, A. M., Burch, J. L., Crary, F. J., Young, D. T., Thomsen, M. F., et al. ( 2005 ). Evidence for rotationally driven plasma transport in Saturn- s magnetosphere. Geophysical Research Letters, 32, L14S10. https://doi.org/10.1029/2005GL022620
dc.identifier.citedreferenceHolmberg, M. K. G., Wahlund, J.- E., Morooka, M. W., & Persoon, A. M. ( 2012 ). Ion densities and velocities in the inner plasma torus of Saturn, Planet. Space Science, 73, 151 - 160.
dc.identifier.citedreferenceJia, X., & Kivelson, M. G. ( 2012 ). Driving Saturn- s magnetospheric periodicities from the upper atmosphere/ionosphere: Magnetotail response to dual sources. Journal of Geophysical Research, 117, A11219. https://doi.org/10.1029/2012JA018183
dc.identifier.citedreferenceJia, X. Z., Kivelson, M. G., & Gombosi, T. I. ( 2016 ). Global MHD modeling of the coupled magnetosphere- ionosphere system at Saturn. American Geophysical union (AGU), chapter 25. https://doi.org/10.1002/9781119066880.ch25
dc.identifier.citedreferenceJia, Y. D., Ma, Y. J., Russell, C. T., Lai, H. R., Toth, G., & Gombosi, T. I. ( 2012 ). Perpendicular flow deviation in a magnetized counter- streaming plasma, Icarus, 218, 895 - 905.
dc.identifier.citedreferenceKennelly, T. J., Leisner, J. S., Hospodarsky, G. B., & Gurnett, D. A. ( 2013 ). Ordering of injection events within Saturnian SLS longitude and local time. Journal of Geophysical Research: Space Physics, 118, 832 - 838. https://doi.org/10.1002/jgra.50152
dc.identifier.citedreferenceKivelson, M. G., Khurana, K. K., Russell, C. T., & Walker, R. J. ( 1997 ). Intermittent short- duration magnetic field anomalies in the Io torus: Evidence for plasma interchange? Geophysical Research Letters, 24, 2127 - 2130.
dc.identifier.citedreferenceKivelson, M. G., & Russell, C. T. ( 1995 ). Introduction to space physics. Cambridge University Press.
dc.identifier.citedreferenceLai, H. R., Russell, C. T., Jia, Y. D., Wei, H. Y., & Dougherty, M. K. ( 2016 ). Transport of magnetic flux and mass in Saturn- s inner magnetosphere. Journal of Geophysical Research: Space Physics, 121, 3050 - 3057. https://doi.org/10.1002/2016JA022436
dc.identifier.citedreferenceParanicas, C., Thomsen, M. F., Kollmann, P., Azari, A. R., Bader, A., Badman, S. V., et al. ( 2020 ). Inflow speed analysis of interchange injections in Saturn’s magnetosphere. Journal of Geophysical Research: Space Physics, 125, e2020JA028299. https://doi.org/10.1029/2020JA028299
dc.identifier.citedreferenceRussell, C. T., & Dougherty, M. K. ( 2010 ). Magnetic fields of the outer planets space. Science Review, 152. https://doi.org/10.1007/s11214-009-9621-7
dc.identifier.citedreferenceSmith, A. W., Jackman, C. M., & Thomsen, M. F. ( 2016 ). Magnetic reconnection in Saturn- s magnetotail: A comprehensive magnetic field survey. Journal of Geophysical Research: Space Physics, 121, 2984 - 3005. https://doi.org/10.1002/2015JA022005
dc.identifier.citedreferenceThomsen, M. F., & Coates, A. J. ( 2019 ). Saturn’s plasmapause: Signature of magnetospheric dynamics. Journal of Geophysical Research: Space Physics, 124, 8804 - 8813. https://doi.org/10.1029/2019JA027075
dc.identifier.citedreferenceThomsen, M. F., Mitchell, D. G., Jia, X., Jackman, C. M., Hospodarsky, G., & Coates, A. J. ( 2015 ). Plasmapause formation at Saturn. Journal of Geophysical Research: Space Physics, 120, 2571 - 2583. https://doi.org/10.1002/2015JA021008
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., et al. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Comparative Physiology, 231 ( 3 ), 870 - 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceVasyliunas, V. M. ( 1983 ). Plasma distribution and flow. In A. J. Dessler (Ed.), Physics of the Jovian magnetospehre (pp. 395 - 453 ). Cambridge Univ. Press.
dc.identifier.citedreferenceWinglee, R. M., Kidder, A., Harnett, E., Ifland, N., Paty, C., & Snowden, D. ( 2013 ). Generation of periodic signatures at Saturn through Titan- s interaction with the centrifugal interchange instability. Journal of Geophysical Research: Space Physics, 118, 4253 - 4269. https://doi.org/10.1002/jgra.50397
dc.identifier.citedreferenceYoung, D. T., Berthelier, J. J., Blanc, M., Burch, J. L., Coates, A. J., Goldstein, R., et al. ( 2004 ). Cassini plasma spectrometer investigation. Space Science Reviews, 114 ( 1- 4 ), 1 - 112. https://doi.org/10.1007/s11214-004-1406-4
dc.identifier.citedreferenceArridge, C. S., Russell, C. T., Khurana, K. K., Achilleos, N., Cowley, S. W. H., Dougherty, M. K., et al. ( 2008 ). Saturn- s magnetodisc current sheet. Journal of Geophysical Research, 113, A04214. https://doi.org/10.1029/2007JA012540
dc.identifier.citedreferenceAzari, A. R., Jia, X., Liemohn, M. W., Hospodarsky, G. B., Provan, G., Ye, S.- Y., et al. ( 2019 ). Are Saturn- s interchange injections organized by rotational longitude? Journal of Geophysical Research: Space Physics, 124, 1806 - 1822. https://doi.org/10.1029/2018JA026196
dc.identifier.citedreferenceBadman, S. V., & Cowley, S. W. H. ( 2007 ). Significance of Dungey- cycle flows in Jupiter- s and Saturn- s magnetospheres, and their identification on closed equatorial field lines. Annales Geophysicae, 25, 941 - 951.
dc.identifier.citedreferenceBurch, J. L., Goldstein, J., Hill, T. W., Young, D. T., Crary, F. J., Coates, A. J., et al. ( 2005 ). Properties of local plasma injections in Saturn- s magnetosphere. Geophysical Research Letters, 32, L14S02. https://doi.org/10.1029/2005GL022611
dc.identifier.citedreferenceBurger, J. L., Goldstein, J., Lewis, W. S., Young, D. T., Coates, A. J., Dougherty, M. K., & Andre, N. ( 2007 ). Tethys and Dione: Sources of outward flowing plasma in Saturn- s magnetosphere. Nature, 447, 833 - 835. https://doi.org/10.1038/nature05906
dc.identifier.citedreferenceChen, Y., & Hill, T. W. ( 2008 ). Statistical analysis of injection/dispersion events in Saturn- s inner magnetosphere. Journal of Geophysical Research, 113, A07215. https://doi.org/10.1029/2008JA013166
dc.identifier.citedreferenceConnerney, J., Ness, N., & Acuna, M. ( 1982 ). Zonal harmonic model of Saturn’s magnetic field from Voyager 1 and 2 observations. Nature, 298, 44 - 46.
dc.identifier.citedreferenceDougherty, M. K., Kellock, S., Slootweg, A. P., Achilleos, N., Joy, S. P., & Mafi, J. N. ( 2013 ). Cassini orbiter MAG calibrated summary 1 sec averages V1.0, CO- E/SW/J/S- MAG- 4- SUMM- 1SECAVG- V1.0. NASA Planetary Data System.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.