Show simple item record

Jupiter’s Overturning Circulation: Breaking Waves Take the Place of Solid Boundaries

dc.contributor.authorIngersoll, Andrew P.
dc.contributor.authorAtreya, Sushil
dc.contributor.authorBolton, Scott J.
dc.contributor.authorBrueshaber, Shawn
dc.contributor.authorFletcher, Leigh N.
dc.contributor.authorLevin, Steven M.
dc.contributor.authorLi, Cheng
dc.contributor.authorLi, Liming
dc.contributor.authorLunine, Jonathan I.
dc.contributor.authorOrton, Glenn S.
dc.contributor.authorWaite, Hunter
dc.date.accessioned2021-12-02T02:32:02Z
dc.date.available2023-01-01 21:32:00en
dc.date.available2021-12-02T02:32:02Z
dc.date.issued2021-12-16
dc.identifier.citationIngersoll, Andrew P.; Atreya, Sushil; Bolton, Scott J.; Brueshaber, Shawn; Fletcher, Leigh N.; Levin, Steven M.; Li, Cheng; Li, Liming; Lunine, Jonathan I.; Orton, Glenn S.; Waite, Hunter (2021). "Jupiter’s Overturning Circulation: Breaking Waves Take the Place of Solid Boundaries." Geophysical Research Letters 48(23): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/171045
dc.description.abstractCloud‐tracked wind observations document the role of eddies in putting momentum into the zonal jets. Chemical tracers, lightning, clouds, and temperature anomalies document the rising and sinking in the belts and zones, but questions remain about what drives the flow between the belts and zones. We suggest an additional role for the eddies, which is to generate waves that propagate both up and down from the cloud layer. When the waves break they deposit momentum and thereby replace the friction forces at solid boundaries that enable overturning circulations on terrestrial planets. By depositing momentum of one sign within the cloud layer and momentum of the opposite sign above and below the clouds, the eddies maintain all components of the circulation, including the stacked, oppositely rotating cells between each belt‐zone pair, and the zonal jets themselves.Plain Language SummaryThe dark belts and bright zones that circle the planet at constant latitude, along with the jet streams on the belt‐zone boundaries, are the iconic dynamical features of Jupiter’s atmosphere. But the circulation cells with rising, sinking, and cross‐latitude motion are just as important because they maintain the storms and turbulent eddies. Voyager and Cassini have shown that the turbulent eddies put energy into the jet streams. We argue that the eddies also put energy into the circulation cells. They do this by generating waves that break as they propagate above and below the clouds. The breaking waves provide the essential forces that replace those that occur on planets with solid boundaries.Key PointsThis study proposes a dynamical mechanism that maintains the circulation cells connecting neighboring belts and zones of JupiterWaves that propagate down from the cloud layer are key; when they break they produce a drag force that mimics the effect of a solid boundaryEddies within the clouds drive the zonal jets and probably drive the waves, thereby driving all aspects of the zonal mean circulation
dc.publisherWiley Periodicals, Inc.
dc.publisherAcademic Press
dc.subject.othercirculation
dc.subject.othereddies
dc.subject.otherwaves
dc.subject.otherJuno
dc.subject.otherJupiter
dc.subject.otheratmosphere
dc.titleJupiter’s Overturning Circulation: Breaking Waves Take the Place of Solid Boundaries
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171045/1/grl63254.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171045/2/2021GL095756-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171045/3/grl63254_am.pdf
dc.identifier.doi10.1029/2021GL095756
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceLittle, B., Anger, C. D., Ingersoll, A. P., Vasavada, A. R., Senske, D. A., Breneman, H. H., et al. ( 1999 ). Galileo images of lightning on Jupiter. Icarus, 142, 306 – 323. https://doi.org/10.1006/icar.1999.6195
dc.identifier.citedreferenceDowling, T. ( 1995 ). Dynamics of Jovian atmospheres. Annual Review of Fluid Mechanics, 27, 293 – 334. https://doi.org/10.1146/annurev.fl.27.010195.001453
dc.identifier.citedreferenceDuer, K., Gavriel, N., Galanti, E., Kaspi, Y., Fletcher, L. N., Guillot, T., et al. ( 2021 ). Evidence for multiple Ferrel cells on Jupiter. Geophysical Research Letters, 48, e2021GL095651. https://doi.org/10.1029/2021GL095651
dc.identifier.citedreferenceFletcher, L. N., Oyafuso, F. A., Allison, M., Ingersoll, A. P., Li, L., Kaspi, Y., et al. ( 2021 ). Jupiter’s temperate belt/zone contrasts revealed at depth by Juno microwave observations. Journal of Geophysical Research: Planets. https://doi.org/10.1029/2021JE006858
dc.identifier.citedreferenceGalanti, E., Kaspi, Y., Duer, K., Fletcher, L., Ingersoll, A. P., Li, C., et al. ( 2021 ). Constraints on the latitudinal profile of Jupiter’s deep jets. Geophysical Research Letters. https://doi.org/10.1002/2021GL092912R
dc.identifier.citedreferenceGierasch, P., Conrath, B., & Magalhaes, J. ( 1986 ). Zonal mean properties of Jupiter’s upper troposphere from Voyager infrared observations. Icarus, 67 ( 3 ), 456 – 483. https://doi.org/10.1016/0019-1035(86)90125-9
dc.identifier.citedreferenceGierasch, P. J., Ingersoll, A. P., Banfield, D., Ewald, S. P., Helfenstein, P., Simon‐Miller, A., et al. ( 2000 ). Observation of moist convection in Jupiter’s atmosphere. Nature, 403 ( 6770 ), 628 – 630. https://doi.org/10.1038/35001017
dc.identifier.citedreferenceGuillot, T., Li, C., Bolton, S. J., Brown, S. T., Ingersoll, A. P., Janssen, M. A., et al. ( 2020 ). Storms and the depletion of ammonia in Jupiter: II. Explaining the Juno observations. Journal of Geophysical Research: Planets, 125, e06404. https://doi.org/10.1029/2020JE006404
dc.identifier.citedreferenceHeimpel, M., Gastine, T., & Wicht, J. ( 2016 ). Simulation of deep‐seated zonal jets and shallow vortices in gas giant atmospheres. Nature Geoscience, 9, 19 – 23. https://doi.org/10.1038/ngeo2601
dc.identifier.citedreferenceHess, S. J., & Panofsky, H. A. ( 1951 ). The atmospheres of the other planets. In Compendium of meteorology (pp. 391 – 398 ). American Meteorology Society. https://doi.org/10.1007/978-1-940033-70-9_34
dc.identifier.citedreferenceHunt, G., & Muller, J. ( 1979 ). Voyager observations of small‐scale waves in the equatorial region of the Jovian atmosphere. Nature, 280 ( 5725 ), 778 – 780. https://doi.org/10.1038/280778a0
dc.identifier.citedreferenceIngersoll, A., Beebe, R., Mitchell, J., Garneau, G., Yagi, G., & Muller, J. ( 1981 ). Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager‐1 and Voyager‐2 images. Journal of Geophysical Research, 86 ( A10 ), 8733 – 8743. https://doi.org/10.1029/JA086iA10p08733
dc.identifier.citedreferenceIngersoll, A. P., Adumitroaie, V., Allison, M. D., Atreya, S., Bellotti, A. A., Bolton, S. J., et al. ( 2017 ). Implications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer. Geophysical Research Letters, 44, 7676 – 7685. https://doi.org/10.1002/2017GL074277
dc.identifier.citedreferenceIngersoll, A. P., Gierasch, P. J., Banfield, D., Vasavada, A. R., & Galileo Imaging Team. ( 2000 ). Moist convection as an energy source for the large‐scale motions in Jupiter’s atmosphere. Nature, 403 ( 6770 ), 630 – 632. https://doi.org/10.1038/35001021
dc.identifier.citedreferenceKaspi, Y., Galanti, E., Hubbard, W. B., Stevenson, D. J., Bolton, S. J., Iess, L., et al. ( 2018 ). Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nature, 555 ( 7695 ), 223 – 226. https://doi.org/10.1038/nature25793
dc.identifier.citedreferenceLi, C., Ingersoll, A., Janssen, M., Levin, S., Bolton, S., Adumitroaie, V., et al. ( 2017 ). The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophysical Research Letters, 44, 5317 – 5325. https://doi.org/10.1002/2017GL073159
dc.identifier.citedreferenceLi, L. M., Ingersoll, A. P., Vasavada, A. R., Porco, C. C., Del Genio, A. D., & Ewald, S. P. ( 2004 ). Life cycles of spots on Jupiter from Cassini images. Icarus, 172, 9 – 23. https://doi.org/10.1016/j.icarus.2003.10.015
dc.identifier.citedreferenceLimaye, S. ( 1986 ). Jupiter—New estimates of the mean zonal flow at the cloud level. Icarus, 65 ( 2–3 ), 335 – 352. https://doi.org/10.1016/0019-1035(86)90142-9
dc.identifier.citedreferenceLiu, J., & Schneider, T. ( 2010 ). Mechanisms of jet formation on the giant planets. Journal of the Atmospheric Sciences, 67 ( 11 ), 3652 – 3672. https://doi.org/10.1175/2010JAS3492.1
dc.identifier.citedreferenceMagalhaes, J. A., Seiff, A., & Young, R. E. ( 2002 ). The stratification of Jupiter’s troposphere at the Galileo probe entry site. Icarus, 158 ( 2 ), 410 – 433. https://doi.org/10.1006/icar.2002.6891
dc.identifier.citedreferenceMatcheva, K. I., Conrath, B. J., Gierasch, P. J., & Flasar, F. M. ( 2005 ). The cloud structure of the Jovian atmosphere as seen by the Cassini/CIRS experiment. Icarus, 179, 432 – 448. https://doi.org/10.1016/j.icarus.2005.06.020
dc.identifier.citedreferenceOrton, G. S., Tabataba‐Vakili, F., Eichstaedt, G., Rogers, J., Hansen, C. J., Momary, T. W., et al. ( 2020 ). A survey of small‐scale waves and wave‐like phenomena in Jupiter’s atmosphere detected by JunoCam. Journal of Geophysical Research: Planets, 125, e2019JE006369. https://doi.org/10.1029/2019JE006369
dc.identifier.citedreferenceOyafuso, F., Levin, S., Orton, G., Brown, S. T., Adumitroaie, V., Janssen, M., et al. ( 2020 ). Angular dependence and spatial distribution of Jupiter’s centimeter‐wave thermal emission from Juno’s microwave radiometer. Earth and Space Science, 7, e2020EA001254. https://doi.org/10.1029/2020EA001254
dc.identifier.citedreferencePorco, C. C., West, R. A., McEwen, A., Del Genio, A. D., Ingersoll, A. P., Thomas, P., et al. ( 2003 ). Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science, 299, 1541 – 1547. https://doi.org/10.1126/science.1079462
dc.identifier.citedreferenceRead, P. L., Gierasch, P. J., Conrath, B. J., Simon‐Miller, A., Fouchet, T., & Yamazaki, Y. H. ( 2006 ). Mapping potential‐vorticity dynamics on Jupiter. I: Zonal‐mean circulation from Cassini and Voyager 1 data. Quarterly Journal of the Royal Meteorological Society, 132, 1577 – 1603. https://doi.org/10.1256/qj.05.34
dc.identifier.citedreferenceSalyk, C., Ingersoll, A. P., Lorre, J., Vasavada, A., & Del Genio, A. D. ( 2006 ). Interaction between eddies and mean flow in Jupiter’s atmosphere: Analysis of Cassini imaging data. Icarus, 185, 430 – 442. https://doi.org/10.1016/j.icarus.2006.08.007
dc.identifier.citedreferenceSchneider, T., & Liu, J. ( 2009 ). Formation of jets and equatorial superrotation on Jupiter. Journal of the Atmospheric Sciences, 66 ( 3 ), 579 – 601. https://doi.org/10.1175/2008JAS2798.1
dc.identifier.citedreferenceSimon, A. A., Hueso, R., Inurrigarro, P., Sanchez‐Lavega, A., Morales‐Juberias, R., Cosentino, R., et al. ( 2018 ). A new, long‐lived, Jupiter mesoscale wave observed at visible wavelengths. The Astronomical Journal, 156 ( 2 ), 79. https://doi.org/10.3847/1538-3881/aacaf5
dc.identifier.citedreferenceSimon, A. A., Li, L., & Reuter, D. C. ( 2015 ). Small‐scale waves on Jupiter: A reanalysis of New Horizons, Voyager, and Galileo data. Geophysical Research Letters, 42, 2612 – 2618. https://doi.org/10.1002/2015GL063433
dc.identifier.citedreferenceSromovsky, L. A., & Fry, P. M. ( 2018 ). Composition and structure of fresh ammonia clouds on Jupiter based on quantitative analysis of Galileo/NIMS and New Horizons/LEISA spectra. Icarus, 307, 347 – 370. https://doi.org/10.1016/j.icarus.2017.10.037
dc.identifier.citedreferenceVallis, G. K. ( 2017 ). Atmospheric and oceanic fluid dynamics ( 2nd ed. ). Cambridge University Press.
dc.identifier.citedreferenceWestphal, J. ( 1969 ). Observations of localized 5‐micron radiation from Jupiter. The Astrophysical Journal, 157, L63. https://doi.org/10.1086/180386
dc.identifier.citedreferenceYadav, R. K., & Bloxham, J. ( 2020 ). Deep rotating convection generates the polar hexagon on Saturn. Proceedings of the National Academy of Sciences of the United States of America, 117 ( 25 ), 13991 – 13996. https://doi.org/10.1073/pnas.2000317117
dc.identifier.citedreferenceAit‐Chaalal, F., & Schneider, T. ( 2015 ). Why eddy momentum fluxes are concentrated in the upper troposphere. Journal of the Atmospheric Sciences, 72 ( 4 ), 1585 – 1604. https://doi.org/10.1175/JAS-D-14-0243.1
dc.identifier.citedreferenceAndrews, D., & McIntyre, M. ( 1976 ). Planetary waves in horizontal and vertical shear—Asymptotic theory for equatorial waves in weak shear. Journal of the Atmospheric Sciences, 33 ( 11 ), 2049 – 2053. https://doi.org/10.1175/1520-0469(1976)033<2049:PWIHAV>2.0.CO;2
dc.identifier.citedreferenceAndrews, D. G., Holton, J. R., & Leovy, C. B. ( 1987 ). Middle atmosphere dynamics. Academic Press.
dc.identifier.citedreferenceArregi, J., Rojas, J. F., Hueso, R., & Sanchez‐Lavega, A. ( 2009 ). Gravity waves in Jupiter’s equatorial clouds observed by the Galileo orbiter. Icarus, 202, 358 – 360. https://doi.org/10.1016/j.icarus.2009.03.028
dc.identifier.citedreferenceBanfield, D., Conrath, B. J., Gierasch, P. J., Nicholson, P. D., & Matthews, K. ( 1998 ). Near‐IR spectrophotometry of Jovian aerosols—Meridional and vertical distributions. Icarus, 134, 11 – 23. https://doi.org/10.1006/icar.1998.5942
dc.identifier.citedreferenceBeebe, R., Ingersoll, A., Hunt, G., Mitchell, J., & Muller, J. ( 1980 ). Measurements of wind vectors, eddy momentum transports, and energy conversions in Jupiter’s atmosphere from voyager‐1 images. Geophysical Research Letters, 7 ( 1 ), 1 – 4. https://doi.org/10.1029/GL007i001p00001
dc.identifier.citedreferenceBolton, S. J., Adriani, A., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S., et al. ( 2017 ). Jupiter’s interior and deep atmosphere: The initial pole‐to‐pole passes with the Juno spacecraft. Science, 356 ( 6340 ), 821 – 825. https://doi.org/10.1126/science.aal2108
dc.identifier.citedreferenceCharney, J., & Drazin, P. ( 1961 ). Propagation of planetary‐scale disturbances from lower into upper atmosphere. Journal of Geophysical Research, 66 ( 1 ), 83 – 109. https://doi.org/10.1029/JZ066i001p00083
dc.identifier.citedreferenceCuff, K., & Heimpel, M. ( 2018 ). Effects of neutral buoyancy outer boundary condition in models of deep convection in giant planets. Physics of the Earth and Planetary Interiors, 282, 89 – 99. https://doi.org/10.1016/j.pepi.2018.07.001
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.