Show simple item record

Synaptotagmin- 11 inhibits spontaneous neurotransmission through vti1a

dc.contributor.authorLi, Wan‐ru
dc.contributor.authorWang, Ya‐Long
dc.contributor.authorLi, Chao
dc.contributor.authorGao, Pei
dc.contributor.authorZhang, Fei‐Fan
dc.contributor.authorHu, Meiqin
dc.contributor.authorLi, Jing‐chen
dc.contributor.authorZhang, Shuli
dc.contributor.authorLi, Rena
dc.contributor.authorZhang, Claire Xi
dc.date.accessioned2021-12-02T02:32:13Z
dc.date.available2022-12-01 21:32:12en
dc.date.available2021-12-02T02:32:13Z
dc.date.issued2021-11
dc.identifier.citationLi, Wan‐ru ; Wang, Ya‐Long ; Li, Chao; Gao, Pei; Zhang, Fei‐Fan ; Hu, Meiqin; Li, Jing‐chen ; Zhang, Shuli; Li, Rena; Zhang, Claire Xi (2021). "Synaptotagmin- 11 inhibits spontaneous neurotransmission through vti1a." Journal of Neurochemistry (4): 729-741.
dc.identifier.issn0022-3042
dc.identifier.issn1471-4159
dc.identifier.urihttps://hdl.handle.net/2027.42/171049
dc.description.abstractRecent work has revealed that spontaneous release plays critical roles in the central nervous system, but how it is regulated remains elusive. Here, we report that synaptotagmin- 11 (Syt11), a Ca2+- independent Syt isoform associated with schizophrenia and Parkinson’s disease, suppressed spontaneous release. Syt11- knockout hippocampal neurons showed an increased frequency of miniature excitatory post- synaptic currents while over- expression of Syt11 inversely decreased the frequency. Neither knockout nor over- expression of Syt11 affected the average amplitude, suggesting the pre- synaptic regulation of spontaneous neurotransmission by Syt11. Glutathione S- transferase pull- down, co- immunoprecipitation, and affinity- purification experiments demonstrated a direct interaction of Syt11 with vps10p- tail- interactor- 1a (vti1a), a non- canonical SNARE protein that maintains spontaneous release. Importantly, knockdown of vti1a reversed the phenotype of Syt11 knockout, identifying vti1a as the main target of Syt11 inhibition. Domain analysis revealed that the C2A domain of Syt11 bound vti1a with high affinity. Consistently, expression of the C2A domain alone rescued the phenotype of elevated spontaneous release in Syt11- knockout neurons similar to the full- length protein. Altogether, our results suggest that Syt11 inhibits vti1a- containing vesicles during spontaneous release.Spontaneous neurotransmission plays important roles in the maturation of primeval synapses, post- synaptic signal transduction and synaptic plasticity. Here, we report that synaptotagmin- 11 (Syt11)- knockout in hippocampal neurons increases the frequency of miniature excitatory post- synaptic currents while over- expression reduces it. Mechanistically, Syt11 directly interacts with vps10p- tail- interactor- 1a (vti1a), and knockdown of vti1a reverses the Syt11- knockout phenotype, identifying vti1a as the main target of Syt11 inhibition. The C2A domain of Syt11 binds vti1a with high affinity. Expression of the C2A domain rescues the knockout phenotype similar to full- length Syt11. Altogether, we have identified Syt11 as a novel inhibitor of spontaneous neurotransmission via interaction with vti1a.
dc.publisherWiley Periodicals, Inc.
dc.subject.othervti1a
dc.subject.otherspontaneous release
dc.subject.othersynaptotagmin
dc.subject.otherSNARE
dc.titleSynaptotagmin- 11 inhibits spontaneous neurotransmission through vti1a
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171049/1/jnc15523_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171049/2/jnc15523.pdf
dc.identifier.doi10.1111/jnc.15523
dc.identifier.sourceJournal of Neurochemistry
dc.identifier.citedreferenceRaingo, J., Khvotchev, M., Liu, P., Darios, F., Li, Y. C., Ramirez, D. M. O., Adachi, M., Lemieux, P., Toth, K., Davletov, B., & Kavalali, E. T. ( 2012 ). VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nature Neuroscience, 15, 738 - 745. https://doi.org/10.1038/nn.3067
dc.identifier.citedreferenceNishiki, T., & Augustine, G. J. ( 2004 ). Synaptotagmin I synchronizes transmitter release in mouse hippocampal neurons. Journal of Neuroscience, 24, 6127 - 6132. https://doi.org/10.1523/JNEUROSCI.1563- 04.2004
dc.identifier.citedreferencePallanck, L. ( 2003 ). A tale of two C2 domains. Trends in Neurosciences, 26, 2 - 4. https://doi.org/10.1016/S0166- 2236(02)00007- 3
dc.identifier.citedreferencePang, Z. P., Bacaj, T., Yang, X., Zhou, P., Xu, W., & Sudhof, T. C. ( 2011 ). Doc2 supports spontaneous synaptic transmission by a Ca(2+)- independent mechanism. Neuron, 70, 244 - 251.
dc.identifier.citedreferencePang, Z. P., & Sudhof, T. C. ( 2010 ). Cell biology of Ca 2+ - triggered exocytosis. Current Opinion in Cell Biology, 22, 496 - 505. https://doi.org/10.1016/j.ceb.2010.05.001
dc.identifier.citedreferencePang, Z. P., Sun, J., Rizo, J., Maximov, A., & Sudhof, T. C. ( 2006 ). Genetic analysis of synaptotagmin 2 in spontaneous and Ca 2+ - triggered neurotransmitter release. EMBO Journal, 25, 2039 - 2050. https://doi.org/10.1038/sj.emboj.7601103
dc.identifier.citedreferencePihlstrøm, L., Axelsson, G., BjørnarÃ¥, K. A., Dizdar, N., Fardell, C., Forsgren, L., Holmberg, B., Larsen, J. P., Linder, J., Nissbrandt, H., Tysnes, O.- B., à hman, E., Dietrichs, E., & Toft, M. ( 2013 ). Supportive evidence for 11 loci from genome- wide association studies in Parkinson’s disease. Neurobiology of Aging, 34 ( 6 ), 1708.e7 - 1708.e13. https://doi.org/10.1016/j.neurobiolaging.2012.10.019
dc.identifier.citedreferencePratt, K. G., Zhu, P., Watari, H., Cook, D. G., & Sullivan, J. M. ( 2011 ). A novel role for γ- secretase: selective regulation of spontaneous neurotransmitter release from hippocampal neurons. Journal of Neuroscience, 31, 899 - 906.
dc.identifier.citedreferenceRamirez, D. M., Khvotchev, M., Trauterman, B., & Kavalali, E. T. ( 2012 ). Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron, 73, 121 - 134. https://doi.org/10.1016/j.neuron.2011.10.034
dc.identifier.citedreferenceRegehr, W. G. ( 2012 ). Short- term presynaptic plasticity. Cold Spring Harbor Perspectives in Biology, 4, a005702. https://doi.org/10.1101/cshperspect.a005702
dc.identifier.citedreferenceSara, Y., Virmani, T., Deak, F., Liu, X., & Kavalali, E. T. ( 2005 ). An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron, 45, 563 - 573. https://doi.org/10.1016/j.neuron.2004.12.056
dc.identifier.citedreferenceSchupp, M., Malsam, J., Ruiter, M., Scheutzow, A., Wierda, K. D., Sollner, T. H., & Sorensen, J. B. ( 2016 ). Interactions between SNAP- 25 and synaptotagmin- 1 are involved in vesicle priming, clamping spontaneous and stimulating evoked neurotransmission. Journal of Neuroscience, 36, 11865 - 11880. https://doi.org/10.1523/JNEUROSCI.1011- 16.2016
dc.identifier.citedreferenceSesar, A., Cacheiro, P., López- López, M., Camiña- Tato, M., Quintáns, B., Monroy- Jaramillo, N., Alonso- Vilatela, M.- E., Cebrián, E., Yescas- Gómez, P., Ares, B., Rivas, M.- T., Castro, A., Carracedo, A., & Sobrido, M.- J. ( 2016 ). Synaptotagmin XI in Parkinson’s disease: New evidence from an association study in Spain and Mexico. Journal of the Neurological Sciences, 362, 321 - 325. https://doi.org/10.1016/j.jns.2016.02.014
dc.identifier.citedreferenceShimojo, M., Madara, J., Pankow, S., Liu, X., Yates, J. 3rd, Sudhof, T. C., & Maximov, A. ( 2019 ). Synaptotagmin- 11 mediates a vesicle trafficking pathway that is essential for development and synaptic plasticity. Genes and Development, 33, 365 - 376. https://doi.org/10.1101/gad.320077.118
dc.identifier.citedreferenceSreetama, S. C., Takano, T., Nedergaard, M., Simon, S. M., & Jaiswal, J. K. ( 2016 ). Injured astrocytes are repaired by Synaptotagmin XI- regulated lysosome exocytosis. Cell Death and Differentiation, 23, 596 - 607. https://doi.org/10.1038/cdd.2015.124
dc.identifier.citedreferenceSudhof, T. C., & Rothman, J. E. ( 2009 ). Membrane fusion: grappling with SNARE and SM proteins. Science, 323, 474 - 477. https://doi.org/10.1126/science.1161748
dc.identifier.citedreferenceSun, J., Pang, Z. P., Qin, D., Fahim, A. T., Adachi, R., & Sudhof, T. C. ( 2007 ). A dual- Ca 2+ - sensor model for neurotransmitter release in a central synapse. Nature, 450, 676 - 682. https://doi.org/10.1038/nature06308
dc.identifier.citedreferenceTakamori, S., Holt, M., Stenius, K., Lemke, E. A., Grønborg, M., Riedel, D., Urlaub, H., Schenck, S., Brügger, B., Ringler, P., Müller, S. A., Rammner, B., Gräter, F., Hub, J. S., De Groot, B. L., Mieskes, G., Moriyama, Y., Klingauf, J., Grubmüller, H., - ¦ Jahn, R. ( 2006 ). Molecular anatomy of a trafficking organelle. Cell, 127, 831 - 846. https://doi.org/10.1016/j.cell.2006.10.030
dc.identifier.citedreferenceTruckenbrodt, S., & Rizzoli, S. O. ( 2014 ). Spontaneous vesicle recycling in the synaptic bouton. Frontiers in Cellular Neuroscience, 8, 409. https://doi.org/10.3389/fncel.2014.00409
dc.identifier.citedreferencevon Poser, C., Ichtchenko, K., Shao, X., Rizo, J., & Sudhof, T. C. ( 1997 ). The evolutionary pressure to inactivate. A subclass of synaptotagmins with an amino acid substitution that abolishes Ca 2+ binding. Journal of Biological Chemistry, 272, 14314 - 14319.
dc.identifier.citedreferenceWalter, A. M., Kurps, J., de Wit, H., Schöning, S., Toft- Bertelsen, T. L., Lauks, J., Ziomkiewicz, I., Weiss, A. N., Schulz, A., Fischer von Mollard, G., & Verhage, M. ( 2014 ). The SNARE protein vti1a functions in dense- core vesicle biogenesis. EMBO Journal, 33, 1681 - 1697.
dc.identifier.citedreferenceWang, C., Kang, X., Zhou, L. I., Chai, Z., Wu, Q., Huang, R., Xu, H., Hu, M., Sun, X., Sun, S., Li, J., Jiao, R., Zuo, P., Zheng, L., Yue, Z., & Zhou, Z. ( 2018 ). Synaptotagmin- 11 is a critical mediator of parkin- linked neurotoxicity and Parkinson’s disease- like pathology. Nature Communications, 9, 81. https://doi.org/10.1038/s41467- 017- 02593- y
dc.identifier.citedreferenceWang, C., Wang, Y., Hu, M., Chai, Z., Wu, Q., Huang, R., Han, W., Zhang, C. X., & Zhou, Z. ( 2016 ). Synaptotagmin- 11 inhibits clathrin- mediated and bulk endocytosis. EMBO Reports, 17, 47 - 63. https://doi.org/10.15252/embr.201540689
dc.identifier.citedreferenceWierda, K. D., & Sorensen, J. B. ( 2014 ). Innervation by a GABAergic neuron depresses spontaneous release in glutamatergic neurons and unveils the clamping phenotype of synaptotagmin- 1. Journal of Neuroscience, 34, 2100 - 2110. https://doi.org/10.1523/JNEUROSCI.3934- 13.2014
dc.identifier.citedreferenceWilliams, C. L., & Smith, S. M. ( 2018 ). Calcium dependence of spontaneous neurotransmitter release. Journal of Neuroscience Research, 96, 335 - 347. https://doi.org/10.1002/jnr.24116
dc.identifier.citedreferenceXu, J., Mashimo, T., & Sudhof, T. C. ( 2007 ). Synaptotagmin- 1, - 2, and - 9: Ca(2+) sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron, 54, 567 - 581. https://doi.org/10.1016/j.neuron.2007.05.004
dc.identifier.citedreferenceXu, J., Pang, Z. P., Shin, O. H., & Sudhof, T. C. ( 2009 ). Synaptotagmin- 1 functions as a Ca 2+ sensor for spontaneous release. Nature Neuroscience, 12, 759 - 766. https://doi.org/10.1038/nn.2320
dc.identifier.citedreferenceYan, S., Wang, Y., Zhang, Y., Wang, L. E., Zhao, X., Du, C., Gao, P., Yan, F., Liu, F., Gong, X., Guan, Y., Cui, X., Wang, X., & Xi Zhang, C. ( 2020 ). Synaptotagmin- 11 regulates the functions of caveolae and responds to mechanical stimuli in astrocytes. The FASEB Journal, 34, 2609 - 2624. https://doi.org/10.1096/fj.201901715R
dc.identifier.citedreferenceYang, X., Cao, P., & Sudhof, T. C. ( 2013 ). Deconstructing complexin function in activating and clamping Ca 2+ - triggered exocytosis by comparing knockout and knockdown phenotypes. Proceedings of the National Academy of Sciences, 110, 20777 - 20782. https://doi.org/10.1073/pnas.1321367110
dc.identifier.citedreferenceAdvani, R. J., Bae, H. R., Bock, J. B., Chao, D. S., Doung, Y. C., Prekeris, R., Yoo, J. S., & Scheller, R. H. ( 1998 ). Seven novel mammalian SNARE proteins localize to distinct membrane compartments. Journal of Biological Chemistry, 273, 10317 - 10324. https://doi.org/10.1074/jbc.273.17.10317
dc.identifier.citedreferenceAndreae, L. C., & Burrone, J. ( 2018 ). The role of spontaneous neurotransmission in synapse and circuit development. Journal of Neuroscience Research, 96, 354 - 359. https://doi.org/10.1002/jnr.24154
dc.identifier.citedreferenceAntonin, W., Fasshauer, D., Becker, S., Jahn, R., & Schneider, T. R. ( 2002 ). Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Natural Structural Biology, 9, 107 - 111. https://doi.org/10.1038/nsb746
dc.identifier.citedreferenceBacaj, T., Wu, D., Yang, X., Morishita, W., Zhou, P., Xu, W., Malenka, R. C., & Sudhof, T. C. ( 2013 ). Synaptotagmin- 1 and synaptotagmin- 7 trigger synchronous and asynchronous phases of neurotransmitter release. Neuron, 80, 947 - 959. https://doi.org/10.1016/j.neuron.2013.10.026
dc.identifier.citedreferenceBal, M., Leitz, J., Reese, A. L., Ramirez, D. M., Durakoglugil, M., Herz, J., Monteggia, L. M., & Kavalali, E. T. ( 2013 ). Reelin mobilizes a VAMP7- dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron, 80, 934 - 946. https://doi.org/10.1016/j.neuron.2013.08.024
dc.identifier.citedreferenceBento, C. F., Ashkenazi, A., Jimenez- Sanchez, M., & Rubinsztein, D. C. ( 2016 ). The Parkinson’s disease- associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nature Communications, 7, 11803. https://doi.org/10.1038/ncomms11803
dc.identifier.citedreferenceCornelisse, L. N., Tsivtsivadze, E., Meijer, M., Dijkstra, T. M., Heskes, T., & Verhage, M. ( 2012 ). Molecular machines in the synapse: overlapping protein sets control distinct steps in neurosecretion. PLoS Computational Biology, 8, e1002450. https://doi.org/10.1371/journal.pcbi.1002450
dc.identifier.citedreferenceCrawford, D. C., Ramirez, D. M., Trauterman, B., Monteggia, L. M., & Kavalali, E. T. ( 2017 ). Selective molecular impairment of spontaneous neurotransmission modulates synaptic efficacy. Nature Communications, 8, 14436. https://doi.org/10.1038/ncomms14436
dc.identifier.citedreferenceDean, C., Liu, H., Dunning, F. M., Chang, P. Y., Jackson, M. B., & Chapman, E. R. ( 2009 ). Synaptotagmin- IV modulates synaptic function and long- term potentiation by regulating BDNF release. Nature Neuroscience, 12, 767 - 776. https://doi.org/10.1038/nn.2315
dc.identifier.citedreferenceDu, C., Wang, Y., Zhang, F., Yan, S., Guan, Y., Gong, X., Zhang, T., Cui, X., Wang, X., & Zhang, C. X. ( 2017 ). Synaptotagmin- 11 inhibits cytokine secretion and phagocytosis in microglia. Glia, 65, 1656 - 1667. https://doi.org/10.1002/glia.23186
dc.identifier.citedreferenceEmperador- Melero, J., Huson, V., van Weering, J., Bollmann, C., Fischer von Mollard, G., Toonen, R. F., & Verhage, M. ( 2018 ). Vti1a/b regulate synaptic vesicle and dense core vesicle secretion via protein sorting at the Golgi. Nature Communications, 9, 3421. https://doi.org/10.1038/s41467- 018- 05699- z
dc.identifier.citedreferenceEmperador- Melero, J., Toonen, R. F., & Verhage, M. ( 2019 ). Vti proteins: Beyond endolysosomal trafficking. Neuroscience, 420, 32 - 40. https://doi.org/10.1016/j.neuroscience.2018.11.014.
dc.identifier.citedreferenceFatt, P., & Katz, B. ( 1950 ). Some observations on biological noise. Nature, 166, 597 - 598. https://doi.org/10.1038/166597a0
dc.identifier.citedreferenceFatt, P., & Katz, B. ( 1952 ). Spontaneous subthreshold activity at motor nerve endings. Journal of Physiology, 117, 109 - 128.
dc.identifier.citedreferenceFawley, J. A., Hofmann, M. E., & Andresen, M. C. ( 2014 ). Cannabinoid 1 and transient receptor potential vanilloid 1 receptors discretely modulate evoked glutamate separately from spontaneous glutamate transmission. Journal of Neuroscience, 34, 8324 - 8332. https://doi.org/10.1523/JNEUROSCI.0315- 14.2014
dc.identifier.citedreferenceFredj, N. B., & Burrone, J. ( 2009 ). A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse. Nature Neuroscience, 12, 751 - 758. https://doi.org/10.1038/nn.2317
dc.identifier.citedreferenceGeppert, M., Goda, Y., Hammer, R. E., Li, C., Rosahl, T. W., Stevens, C. F., & Sudhof, T. C. ( 1994 ). Synaptotagmin I: a major Ca 2+ sensor for transmitter release at a central synapse. Cell, 79, 717 - 727. https://doi.org/10.1016/0092- 8674(94)90556- 8
dc.identifier.citedreferenceGlitsch, M. ( 2006 ). Selective inhibition of spontaneous but not Ca 2+ - dependent release machinery by presynaptic group II mGluRs in rat cerebellar slices. Journal of Neurophysiology, 96, 86 - 96.
dc.identifier.citedreferenceGonzalez- Islas, C., Bulow, P., & Wenner, P. ( 2018 ). Regulation of synaptic scaling by action potential- independent miniature neurotransmission. Journal of Neuroscience Research, 96, 348 - 353. https://doi.org/10.1002/jnr.24138
dc.identifier.citedreferenceGroemer, T. W., & Klingauf, J. ( 2007 ). Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool. Nature Neuroscience, 10, 145 - 147. https://doi.org/10.1038/nn1831
dc.identifier.citedreferenceGroffen, A. J., Martens, S., Arazola, R. D., Cornelisse, L. N., Lozovaya, N., de Jong, A. P., Goriounova, N. A., Habets, R. L., Takai, Y., Borst, J. G., & Brose, N. ( 2010 ). Doc2b is a high- affinity Ca 2+ sensor for spontaneous neurotransmitter release. Science, 327, 1614 - 1618.
dc.identifier.citedreferenceHu, H., Wang, X., Li, C., Li, Y., Hao, J., Zhou, Y., Yang, X., Chen, P., Shen, X., & Zhang, S. ( 2021 ). Loss of Dysbindin implicates synaptic vesicle replenishment dysregulation as a potential pathogenic mechanism in schizophrenia. Neuroscience, 452, 138 - 152. https://doi.org/10.1016/j.neuroscience.2020.10.020
dc.identifier.citedreferenceHua, Z., Leal- Ortiz, S., Foss, S. M., Waites, C. L., Garner, C. C., Voglmaier, S. M., & Edwards, R. H. ( 2011 ). v- SNARE composition distinguishes synaptic vesicle pools. Neuron, 71, 474 - 487. https://doi.org/10.1016/j.neuron.2011.06.010
dc.identifier.citedreferenceHuntwork, S., & Littleton, J. T. ( 2007 ). A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nature Neuroscience, 10, 1235 - 1237. https://doi.org/10.1038/nn1980
dc.identifier.citedreferenceHuynh, D. P., Scoles, D. R., Nguyen, D., & Pulst, S. M. ( 2003 ). The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. Human Molecular Genetics, 12, 2587 - 2597. https://doi.org/10.1093/hmg/ddg269
dc.identifier.citedreferenceIkeda, K., & Bekkers, J. M. ( 2009 ). Counting the number of releasable synaptic vesicles in a presynaptic terminal. Proceedings of the National Academy of Sciences, 106, 2945 - 2950. https://doi.org/10.1073/pnas.0811017106
dc.identifier.citedreferenceInoue, S., Imamura, A., Okazaki, Y., Yokota, H., Arai, M., Hayashi, N., Furukawa, A., Itokawa, M., & Oishi, M. ( 2007 ). Synaptotagmin XI as a candidate gene for susceptibility to schizophrenia. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics, 144B, 332 - 340. https://doi.org/10.1002/ajmg.b.30465
dc.identifier.citedreferenceInternational Parkinson Disease Genomics Consortium, Nalls, M. A., Plagnol, V., Hernandez, D. G., Sharma, M., Sheerin, U.- M., Saad, M., Simón- Sánchez, J., Schulte, C., Lesage, S., Sveinbjörnsdóttir, S., Stefánsson, K., Martinez, M., Hardy, S., Heutink, P., Brice, A., Gasser, T., Singleton, A. B., & Wood, N. W. ( 2011 ). Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: A meta- analysis of genome- wide association studies. Lancet, 377, 641 - 649. https://doi.org/10.1016/S0140- 6736(10)62345- 8
dc.identifier.citedreferenceKaeser, P. S., & Regehr, W. G. ( 2014 ). Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annual Review of Physiology, 76, 333 - 363. https://doi.org/10.1146/annurev- physiol- 021113- 170338
dc.identifier.citedreferenceKavalali, E. T. ( 2015 ). The mechanisms and functions of spontaneous neurotransmitter release. Nature Reviews Neuroscience, 16, 5 - 16. https://doi.org/10.1038/nrn3875
dc.identifier.citedreferenceKavalali, E. T. ( 2018 ). Spontaneous neurotransmission: A form of neural communication comes of age. Journal of Neuroscience Research, 96, 331 - 334. https://doi.org/10.1002/jnr.24207
dc.identifier.citedreferenceKononenko, N. L., & Haucke, V. ( 2012 ). Spontaneous neurotransmission: a SNARE for the rest. Neuron, 73, 3 - 5. https://doi.org/10.1016/j.neuron.2011.12.015
dc.identifier.citedreferenceKullmann, D. M. ( 1994 ). Amplitude fluctuations of dual- component EPSCs in hippocampal pyramidal cells: implications for long- term potentiation. Neuron, 12, 1111 - 1120. https://doi.org/10.1016/0896- 6273(94)90318- 2
dc.identifier.citedreferenceLiu, H., Dean, C., Arthur, C. P., Dong, M., & Chapman, E. R. ( 2009 ). Autapses and networks of hippocampal neurons exhibit distinct synaptic transmission phenotypes in the absence of synaptotagmin I. Journal of Neuroscience, 29, 7395 - 7403. https://doi.org/10.1523/JNEUROSCI.1341- 09.2009
dc.identifier.citedreferenceMathew, S. S., Pozzo- Miller, L., & Hablitz, J. J. ( 2008 ). Kainate modulates presynaptic GABA release from two vesicle pools. Journal of Neuroscience, 28, 725 - 731. https://doi.org/10.1523/JNEUROSCI.3625- 07.2008
dc.identifier.citedreferenceMaximov, A., Shin, O. H., Liu, X., & Sudhof, T. C. ( 2007 ). Synaptotagmin- 12, a synaptic vesicle phosphoprotein that modulates spontaneous neurotransmitter release. Journal of Cell Biology, 176, 113 - 124. https://doi.org/10.1083/jcb.200607021
dc.identifier.citedreferenceMaximov, A., & Sudhof, T. C. ( 2005 ). Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release. Neuron, 48, 547 - 554. https://doi.org/10.1016/j.neuron.2005.09.006
dc.identifier.citedreferenceMilochau, A., Lagree, V., Benassy, M. N., Chaignepain, S., Papin, J., Garcia- Arcos, I., Lajoix, A., Monterrat, C., Coudert, L., Schmitter, J. M., & Ochoa, B. ( 2014 ). Synaptotagmin 11 interacts with components of the RNA- induced silencing complex RISC in clonal pancreatic beta- cells. FEBS Letters, 588, 2217 - 2222.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.