Show simple item record

Aramid Nanofiber Membranes for Energy Harvesting from Proton Gradients

dc.contributor.authorChen, Cheng
dc.contributor.authorYang, Guoliang
dc.contributor.authorLiu, Dan
dc.contributor.authorWang, Xungai
dc.contributor.authorKotov, Nicholas A.
dc.contributor.authorLei, Weiwei
dc.date.accessioned2022-01-06T15:47:55Z
dc.date.available2023-02-06 10:47:54en
dc.date.available2022-01-06T15:47:55Z
dc.date.issued2022-01
dc.identifier.citationChen, Cheng; Yang, Guoliang; Liu, Dan; Wang, Xungai; Kotov, Nicholas A.; Lei, Weiwei (2022). "Aramid Nanofiber Membranes for Energy Harvesting from Proton Gradients." Advanced Functional Materials 32(1): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/171124
dc.description.abstractHarvesting osmotic energy from industrial wastewater is an often‐overlooked source of electricity that can be used as a part of the comprehensive distributed energy systems. However, this concept requires, a new generation of inexpensive ion‐selective membranes that must withstand harsh chemical conditions with both high/low pH, have high temperature resilience, display exceptional mechanical properties, and support high ionic conductance. Here, aramid nanofibers (ANFs) based membranes with high chemical/thermal stability, mechanical strength, toughness, and surface charge density make them capable of high‐performance osmotic energy harvesting from pH gradients generated upon wastewater dilution. ANF membranes produce an averaged output power density of 17.3 W m−2 for more than 240 h at pH 0. Taking advantage of the high temperature resilience of aramid, the output power density is increased further to 77 W m−2 at 70 °C, typical for industrial wastewater. Such output power performance is 10× better compared to the current state‐of‐the‐art membranes being augmented by Kevlar‐like environmental robustness of ANF membranes. The improved efficiency of energy harvesting is ascribed to the high proton selectivity of ANFs. Retaining high output power density for large membrane area and fluoride‐free synthesis of ANFs from recyclable material opens the door for scalable wastewater energy harvesting.Aramid nanofibers (ANFs) based membranes with high chemical/thermal stability, mechanical strength, toughness, and surface charge density make them capable of high‐performance osmotic energy harvesting from pH gradients generated upon wastewater dilution. Such output concentration energy power performance of ANFs membrane is 10× better compared to the current state‐of‐the‐art membranes, which is ascribed to the high proton selectivity.
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.otherosmotic energy harvesting
dc.subject.otherwastewater
dc.subject.otheraramid fibers
dc.subject.othermechanical properties
dc.subject.othermembrane
dc.titleAramid Nanofiber Membranes for Energy Harvesting from Proton Gradients
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171124/1/adfm202102080-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171124/2/adfm202102080_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171124/3/adfm202102080.pdf
dc.identifier.doi10.1002/adfm.202102080
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceA. Alessandrino, B. Marelli, C. Arosio, S. Fare, M. C. Tanzi, G. Freddi, Eng. Life Sci. 2008, 8, 219.
dc.identifier.citedreferenceA. Siria, P. Poncharal, A.‐L. Biance, R. Fulcrand, X. Blase, S. T. Purcell, L. Bocquet, Nature 2013, 494, 455.
dc.identifier.citedreferenceK. Raidongia, J. Huang, J. Am. Chem. Soc. 2012, 134, 16528.
dc.identifier.citedreferenceJ. Ji, Q. Kang, Y. F. Zhou, Y. Feng, X. Chen, J. Yuan, W. Z. Guo, Y. K. Wei, L. Jiang, Adv. Funct. Mater. 2017, 27, 1603623.
dc.identifier.citedreferenceJ.‐J. Shao, K. Raidongia, A. R. Koltonow, J. Huang, Nat. Commun. 2015, 6, 7602.
dc.identifier.citedreferenceS. Qin, D. Liu, G. Wang, D. Portehault, C. J. Garvey, Y. Gogotsi, W. Lei, Y. Chen, J. Am. Chem. Soc. 2017, 139, 6314.
dc.identifier.citedreferenceC. E. Ren, K. B. Hatzell, M. Alhabeb, Z. Ling, K. A. Mahmoud, Y. Gogotsi, J. Phys. Chem. Lett. 2015, 6, 4026.
dc.identifier.citedreferenceJ. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, A. Radenovic, Nature 2016, 536, 197.
dc.identifier.citedreferenceW. Xin, Z. Zhang, X. Huang, Y. Hu, T. Zhou, C. Zhu, X.‐Y. Kong, L. Jiang, L. Wen, Nat. Commun. 2019, 10, 3876.
dc.identifier.citedreferenceC.‐N. Yeh, K. Raidongia, J. Shao, Q.‐H. Yang, J. Huang, Nat. Chem. 2015, 7, 166.
dc.identifier.citedreferenceS.‐O. Tung, S. Ho, M. Yang, R. Zhang, N. A. Kotov, Nat. Commun. 2015, 6, 6152.
dc.identifier.citedreferenceM. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu, A. Waas, E. M. Arruda, J. Kieffer, M. D. Thouless, N. A. Kotov, ACS Nano 2011, 5, 6945.
dc.identifier.citedreferenceS. R. Kwon, J. Harris, T. Zhou, D. Loufakis, J. G. Boyd, J. L. Lutkenhaus, ACS Nano 2017, 11, 6682.
dc.identifier.citedreferenceJ. Li, W. Tian, H. Yan, L. He, X. Tuo, J. Appl. Polym. Sci. 2016, 133, 43623.
dc.identifier.citedreferenceY. Li, S. Yuan, C. Zhou, Y. Zhao, B. Van der Bruggen, J. Mater. Chem. A 2018, 6, 22987.
dc.identifier.citedreferenceZ. Ma, S. Kang, J. Ma, L. Shao, A. Wei, C. Liang, J. Gu, B. Yang, D. Dong, L. Wei, Z. Ji, ACS Nano 2019, 13, 7578.
dc.identifier.citedreferenceC. Chen, D. Liu, L. He, S. Qin, J. Wang, J. M. Razal, N. A. Kotov, W. Lei, Joule 2020, 4, 247.
dc.identifier.citedreferenceZ. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen, X. Feng, Nat. Commun. 2019, 10, 2920.
dc.identifier.citedreferenceX. Zhu, J. Hao, B. Bao, Y. Zhou, H. Zhang, J. Pang, Z. Jiang, L. Jiang, Sci. Adv. 2018, 4, eaau1665.
dc.identifier.citedreferenceK. Touati, F. Tadeo, T. Schiestel, Energy Procedia 2014, 50, 960.
dc.identifier.citedreferenceC. F. Wan, T.‐S. Chung, J. Membr. Sci. 2015, 479, 148.
dc.identifier.citedreferenceJ. D. van Beek, L. Beaulieu, H. Schäfer, M. Demura, T. Asakura, B. H. Meier, Nature 2000, 405, 1077.
dc.identifier.citedreferenceA. Nakayama, A. Kakugo, J. P. Gong, Y. Osada, M. Takai, T. Erata, S. Kawano, Adv. Funct. Mater. 2004, 14, 1124.
dc.identifier.citedreferenceB. Yang, L. Wang, M. Zhang, J. Luo, X. Ding, ACS Nano 2019, 13, 7886.
dc.identifier.citedreferenceL. Lv, X. Han, L. Zong, M. Li, J. You, X. Wu, C. Li, ACS Nano 2017, 11, 8178.
dc.identifier.citedreferenceD. Lee, B. Lee, K. H. Park, H. J. Ryu, S. Jeon, S. H. Hong, Nano Lett. 2015, 15, 1238.
dc.identifier.citedreferenceC. Chen, Q.‐H. Yang, Y. Yang, W. Lv, Y. Wen, P.‐X. Hou, M. Wang, H.‐M. Cheng, Adv. Mater. 2009, 21, 3007.
dc.identifier.citedreferenceM. Wang, D. Vecchio, C. Wang, A. Emre, X. Xiao, Z. Jiang, P. Bogdan, Y. Huang, N. A. Kotov, Sci. Rob. 2020, 5, eaba1912.
dc.identifier.citedreferenceF. Vollrath, D. P. Knight, Nature 2001, 410, 541.
dc.identifier.citedreferenceZ. Zhang, X. Sui, P. Li, G. Xie, X.‐Y. Kong, K. Xiao, L. Gao, L. Wen, L. Jiang, J. Am. Chem. Soc. 2017, 139, 8905.
dc.identifier.citedreferenceA. Esfandiar, B. Radha, F. C. Wang, Q. Yang, S. Hu, S. Garaj, R. R. Nair, A. K. Geim, K. Gopinadhan, Science 2017, 358, 511.
dc.identifier.citedreferenceK. Gopinadhan, S. Hu, A. Esfandiar, M. Lozada‐Hidalgo, F. C. Wang, Q. Yang, A. V. Tyurnina, A. Keerthi, B. Radha, A. K. Geim, Science 2019, 363, 145.
dc.identifier.citedreferenceL. Mogg, S. Zhang, G. P. Hao, K. Gopinadhan, D. Barry, B. L. Liu, H. M. Cheng, A. K. Geim, M. Lozada‐Hidalgo, Nat. Commun. 2019, 10, 4243.
dc.identifier.citedreferenceL. Mogg, G. P. Hao, S. Zhang, C. Bacaksiz, Y. C. Zou, S. J. Haigh, F. M. Peeters, A. K. Geim, M. Lozada‐Hidalgo, Nat. Nanotechnol. 2019, 14, 962.
dc.identifier.citedreferenceH. G. Park, Y. Jung, Chem. Soc. Rev. 2014, 43, 565.
dc.identifier.citedreferenceZ. Zhang, X.‐Y. Kong, K. Xiao, Q. Liu, G. Xie, P. Li, J. Ma, Y. Tian, L. Wen, L. Jiang, J. Am. Chem. Soc. 2015, 137, 14765.
dc.identifier.citedreferenceS. Qin, D. Liu, Y. Chen, C. Chen, G. Wang, J. Wang, J. M. Razal, W. Lei, Nano Energy 2018, 47, 368.
dc.identifier.citedreferenceC.‐Y. Lin, C. Combs, Y.‐S. Su, L.‐H. Yeh, Z. S. Siwy, J. Am. Chem. Soc. 2019, 141, 3691.
dc.identifier.citedreferenceJ. Gao, W. Guo, D. Feng, H. Wang, D. Zhao, L. Jiang, J. Am. Chem. Soc. 2014, 136, 12265.
dc.identifier.citedreferenceX. Zhu, Y. Zhou, J. Hao, B. Bao, X. Bian, X. Jiang, J. Pang, H. Zhang, Z. Jiang, L. Jiang, ACS Nano 2017, 11, 10816.
dc.identifier.citedreferenceJ. Veerman, M. Saakes, S. J. Metz, G. J. Harmsen, J. Membr. Sci. 2009, 327, 136.
dc.identifier.citedreferenceD. A. Vermaas, M. Saakes, K. Nijmeijer, Environ. Sci. Technol. 2011, 45, 7089.
dc.identifier.citedreferenceD. A. Vermaas, M. Saakes, K. Nijmeijer, J. Membr. Sci. 2011, 385–386, 234.
dc.identifier.citedreferenceY. Zhang, G. C. Schatz, J. Phys. Chem. Lett. 2017, 8, 2842.
dc.identifier.citedreferenceS. Marbach, L. Bocquet, Chem. Soc. Rev. 2019, 48, 3102.
dc.identifier.citedreferenceA. Siria, M.‐L. Bocquet, L. Bocquet, Nat. Rev. Chem. 2017, 1, 0091.
dc.identifier.citedreferenceJ. G. Hong, B. Zhang, S. Glabman, N. Uzal, X. Dou, H. Zhang, X. Wei, Y. Chen, J. Membr. Sci. 2015, 486, 71.
dc.identifier.citedreferenceM. Vanoppen, E. Criel, G. Walpot, D. A. Vermaas, A. Verliefde, npj Clean Water 2018, 1, 9.
dc.identifier.citedreferenceJ. Veerman, M. Saakes, S. J. Metz, G. J. Harmsen, Environ. Sci. Technol. 2010, 44, 9207.
dc.identifier.citedreferenceY. Mei, C. Y. Tang, Desalination 2018, 425, 156.
dc.identifier.citedreferenceN. Y. Yip, D. Brogioli, H. V. M. Hamelers, K. Nijmeijer, Environ. Sci. Technol. 2016, 50, 12072.
dc.identifier.citedreferenceA. P. Straub, A. Deshmukh, M. Elimelech, Energy Environ. Sci. 2016, 9, 31.
dc.identifier.citedreferenceS. De Gisi, M. Notarnicola, in Encyclopedia of Sustainable Technologies, (Ed: M. A. Abraham ), Elsevier, Oxford 2017, pp. 23 – 42.
dc.identifier.citedreferenceP. J. J. Alvarez, C. K. Chan, M. Elimelech, N. J. Halas, D. Villagrán, Nat. Nanotechnol. 2018, 13, 634.
dc.identifier.citedreferenceM. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, A. M. Mayes, Nature 2008, 452, 301.
dc.identifier.citedreferenceD. S. Sholl, R. P. Lively, Nature 2016, 532, 435.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.