Show simple item record

The Formal Cross‐Coupling of Amines and Carboxylic Acids to Form sp3–sp3 Carbon–Carbon Bonds

dc.contributor.authorZhang, Zirong
dc.contributor.authorCernak, Tim
dc.date.accessioned2022-01-06T15:48:28Z
dc.date.available2023-01-06 10:48:25en
dc.date.available2022-01-06T15:48:28Z
dc.date.issued2021-12-20
dc.identifier.citationZhang, Zirong; Cernak, Tim (2021). "The Formal Cross‐Coupling of Amines and Carboxylic Acids to Form sp3–sp3 Carbon–Carbon Bonds." Angewandte Chemie 133(52): 27499-27504.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/171144
dc.description.abstractWe have developed a deaminative–decarboxylative protocol to form new carbon(sp3)–carbon(sp3) bonds from activated amines and carboxylic acids. Amines and carboxylic acids are ubiquitous building blocks, available in broad chemical diversity and at lower cost than typical C−C coupling partners. To leverage amines and acids for C−C coupling, we developed a reductive nickel‐catalyzed cross‐coupling utilizing building block activation as pyridinium salts and redox‐active esters, respectively. Miniaturized high‐throughput experimentation studies were critical to our reaction optimization, with subtle experimental changes such as order of reagent addition, composition of a binary solvent system, and ligand identity having a significant impact on reaction performance. The developed protocol is used in the late‐stage diversification of pharmaceuticals while more than one thousand systematically captured and machine‐readable reaction datapoints are reposited.An amine–carboxylic acid C−C coupling would be a valuable addition to the synthetic toolbox of carbon–carbon bond‐forming reactions. Using miniaturized high‐throughput experimentation, we have developed the first amine–acid cross‐coupling to form C(sp3)−C(sp3) bonds based on preactivation of the building blocks and nickel catalysis.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherC−C coupling
dc.subject.otherhigh-throughput screening
dc.subject.othernickel
dc.subject.otheramines
dc.subject.othercarboxylic acids
dc.titleThe Formal Cross‐Coupling of Amines and Carboxylic Acids to Form sp3–sp3 Carbon–Carbon Bonds
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171144/1/ange202112454.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171144/2/ange202112454_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171144/3/ange202112454-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/ange.202112454
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceS. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451 – 3479.
dc.identifier.citedreferenceJ. Wang, M. E. Hoerrner, M. P. Watson, D. J. Weix, Angew. Chem. Int. Ed. 2020, 59, 13484 – 13489; Angew. Chem. 2020, 132, 13586 – 13591.
dc.identifier.citedreferenceK. M. Baker, D. Lucas Baca, S. Plunkett, M. E. Daneker, M. P. Watson, Org. Lett. 2019, 21, 9738 – 9741.
dc.identifier.citedreferenceM. E. Hoerrner, K. M. Baker, C. H. Basch, E. M. Bampo, M. P. Watson, Org. Lett. 2019, 21, 7356 – 7360.
dc.identifier.citedreferenceJ. Liao, C. H. Basch, M. E. Hoerrner, M. R. Talley, B. P. Boscoe, J. W. Tucker, M. R. Garnsey, M. P. Watson, Org. Lett. 2019, 21, 2941 – 2946.
dc.identifier.citedreferenceSee ref. [39].
dc.identifier.citedreferenceP. Maity, D. M. Shacklady-McAtee, G. P. A. Yap, E. R. Sirianni, M. P. Watson, J. Am. Chem. Soc. 2013, 135, 280 – 285.
dc.identifier.citedreferenceC. J. Helal, M. Bundesmann, S. Hammond, M. Holmstrom, J. Klug-McLeod, B. A. Lefker, D. McLeod, C. Subramanyam, O. Zakaryants, S. Sakata, ACS Med. Chem. Lett. 2019, 10, 1104 – 1109.
dc.identifier.citedreferenceF. W. Goldberg, J. G. Kettle, T. Kogej, M. W. D. Perry, N. P. Tomkinson, Drug Discovery Today 2015, 20, 11 – 17.
dc.identifier.citedreferenceJ. Boström, D. G. Brown, R. J. Young, G. M. Keserü, Nat. Rev. Drug Discovery 2018, 17, 709 – 727.
dc.identifier.citedreferenceD. G. Brown, J. Boström, J. Med. Chem. 2016, 59, 4443 – 4458.
dc.identifier.citedreferenceB. Mahjour, Y. Shen, W. Liu, T. Cernak, Nature 2020, 580, 71 – 75.
dc.identifier.citedreferenceSee ref. [52].
dc.identifier.citedreferenceD. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. Maciejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, D. Le, A. Pon, C. Knox, M. Wilson, Nucleic Acids Res. 2018, 46, D1074 – D1082.
dc.identifier.citedreferenceB. Mahjour, Y. Shen, T. Cernak, Acc. Chem. Res. 2021, 54, 2337 – 2346.
dc.identifier.citedreferenceH. Wong, T. Cernak, Curr. Opin. Green Sustainable Chem. 2018, 11, 91 – 98.
dc.identifier.citedreferenceA. Cook, R. Clément, S. G. Newman, Nat. Protoc. 2021, 16, 1152 – 1169.
dc.identifier.citedreferenceS. W. Krska, D. A. Dirocco, S. D. Dreher, M. Shevlin, Acc. Chem. Res. 2017, 50, 2976 – 2985.
dc.identifier.citedreferenceS. M. Mennen, C. Alhambra, C. L. Allen, M. Barberis, S. Berritt, T. A. Brandt, A. D. Campbell, J. Castañón, A. H. Cherney, M. Christensen, D. B. Damon, J. Eugenio de Diego, S. García-Cerrada, P. García-Losada, R. Haro, J. Janey, D. C. Leitch, L. Li, F. Liu, P. C. Lobben, D. W. C. MacMillan, J. Magano, E. McInturff, S. Monfette, R. J. Post, D. Schultz, B. J. Sitter, J. M. Stevens, I. I. Strambeanu, J. Twilton, K. Wang, M. A. Zajac, Org. Process Res. Dev. 2019, 23, 1213 – 1242.
dc.identifier.citedreferenceT. Cernak, B. Mahjour, ChemRxiv 2020, https://doi.org/10.26434/chemrxiv.13148384.v1.
dc.identifier.citedreferenceJ. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. Macmillan, Nat. Rev. Chem. 2017, 1, 0052.
dc.identifier.citedreferenceA. R. Katritzky, K. Horvath, B. Plau, J. Chem. Soc. Chem. Commun. 1979, 300.
dc.identifier.citedreferenceY. Shen, J. E. Borowski, M. A. Hardy, R. Sarpong, A. G. Doyle, T. Cernak, Nat. Rev. Methods Primers 2021, 1, 23.
dc.identifier.citedreferenceG. Pratsch, G. L. Lackner, L. E. Overman, J. Org. Chem. 2015, 80, 6025 – 6036.
dc.identifier.citedreferenceM. R. Prinsell, D. A. Everson, D. J. Weix, Chem. Commun. 2010, 46, 5743.
dc.identifier.citedreferenceN. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 20, 3437 – 3440.
dc.identifier.citedreferenceA. O. King, N. Okukado, E.-I. Negishi, J. Chem. Soc. Chem. Commun. 1977, 683.
dc.identifier.citedreferenceJ. H. Kirchhoff, M. R. Netherton, I. D. Hills, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 13662 – 13663.
dc.identifier.citedreferenceM. Takeda, K. Nagao, H. Ohmiya, Angew. Chem. Int. Ed. 2020, 59, 22460 – 22464; Angew. Chem. 2020, 132, 22646 – 22650.
dc.identifier.citedreferenceD. Fernandez Reina, A. Ruffoni, Y. S. S. Al-Faiyz, J. J. Douglas, N. S. Sheikh, D. Leonori, ACS Catal. 2017, 7, 4126 – 4130.
dc.identifier.citedreferenceA. Wilsily, F. Tramutola, N. A. Owston, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 5794 – 5797.
dc.identifier.citedreferenceZ. Lu, G. C. Fu, Angew. Chem. Int. Ed. 2010, 49, 6676 – 6678; Angew. Chem. 2010, 122, 6826 – 6828.
dc.identifier.citedreferenceB. Saito, G. C. Fu, J. Am. Chem. Soc. 2007, 129, 9602 – 9603.
dc.identifier.citedreferenceM. R. Netherton, C. Dai, K. Neuschütz, G. C. Fu, J. Am. Chem. Soc. 2001, 123, 10099 – 10100.
dc.identifier.citedreferenceH. Huo, B. J. Gorsline, G. C. Fu, Science 2020, 367, 559 – 564.
dc.identifier.citedreferenceX. Mu, Y. Shibata, Y. Makida, G. C. Fu, Angew. Chem. Int. Ed. 2017, 56, 5821 – 5824; Angew. Chem. 2017, 129, 5915 – 5918.
dc.identifier.citedreferenceJ. T. Binder, C. J. Cordier, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 17003 – 17006.
dc.identifier.citedreferenceJ. Zhou, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 12527 – 12530.
dc.identifier.citedreferenceR. Giovannini, T. Stüdemann, A. Devasagayaraj, G. Dussin, P. Knochel, J. Org. Chem. 1999, 64, 3544 – 3553.
dc.identifier.citedreferenceZ. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A. G. Doyle, D. W. C. Macmillan, Science 2014, 345, 437 – 440.
dc.identifier.citedreferenceC. P. Johnston, R. T. Smith, S. Allmendinger, D. W. C. MacMillan, Nature 2016, 536, 322 – 325.
dc.identifier.citedreferenceZ. Sun, B. Tang, K. K.-C. Liu, H. Y. Zhu, Chem. Commun. 2020, 56, 1294 – 1297.
dc.identifier.citedreferenceJ. Cornella, J. T. Edwards, T. Qin, S. Kawamura, J. Wang, C.-M. Pan, R. Gianatassio, M. Schmidt, M. D. Eastgate, P. S. Baran, J. Am. Chem. Soc. 2016, 138, 2174 – 2177.
dc.identifier.citedreferenceL. Huang, A. M. Olivares, D. J. Weix, Angew. Chem. Int. Ed. 2017, 56, 11901 – 11905; Angew. Chem. 2017, 129, 12063 – 12067.
dc.identifier.citedreferenceT. Qin, J. Cornella, C. Li, L. R. Malins, J. T. Edwards, S. Kawamura, B. D. Maxwell, M. D. Eastgate, P. S. Baran, Science 2016, 352, 801 – 805.
dc.identifier.citedreferenceK. M. M. Huihui, J. A. Caputo, Z. Melchor, A. M. Olivares, A. M. Spiewak, K. A. Johnson, T. A. Dibenedetto, S. Kim, L. K. G. Ackerman, D. J. Weix, J. Am. Chem. Soc. 2016, 138, 5016 – 5019.
dc.identifier.citedreferenceT. Qin, L. R. Malins, J. T. Edwards, R. R. Merchant, A. J. E. Novak, J. Z. Zhong, R. B. Mills, M. Yan, C. Yuan, M. D. Eastgate, P. S. Baran, Angew. Chem. Int. Ed. 2017, 56, 260 – 265; Angew. Chem. 2017, 129, 266 – 271.
dc.identifier.citedreferenceC. Li, J. Wang, L. M. Barton, S. Yu, M. Tian, D. S. Peters, M. Kumar, A. W. Yu, K. A. Johnson, A. K. Chatterjee, M. Yan, P. S. Baran, Science 2017, 356, eaam7355.
dc.identifier.citedreferenceJ. Wang, B. P. Cary, P. D. Beyer, S. H. Gellman, D. J. Weix, Angew. Chem. Int. Ed. 2019, 58, 12081 – 12085; Angew. Chem. 2019, 131, 12209 – 12213.
dc.identifier.citedreferenceX. G. Liu, C. J. Zhou, E. Lin, X. L. Han, S. S. Zhang, Q. Li, H. Wang, Angew. Chem. Int. Ed. 2018, 57, 13096 – 13100; Angew. Chem. 2018, 130, 13280 – 13284.
dc.identifier.citedreferenceF. Toriyama, J. Cornella, L. Wimmer, T.-G. Chen, D. D. Dixon, G. Creech, P. S. Baran, J. Am. Chem. Soc. 2016, 138, 11132 – 11135.
dc.identifier.citedreferenceJ. T. Edwards, R. R. Merchant, K. S. Mcclymont, K. W. Knouse, T. Qin, L. R. Malins, B. Vokits, S. A. Shaw, D.-H. Bao, F.-L. Wei, T. Zhou, M. D. Eastgate, P. S. Baran, Nature 2017, 545, 213 – 218.
dc.identifier.citedreferenceM.-C. Fu, R. Shang, B. Zhao, B. Wang, Y. Fu, Science 2019, 363, 1429 – 1434.
dc.identifier.citedreferenceA. Fawcett, J. Pradeilles, Y. Wang, T. Mutsuga, E. L. Myers, V. K. Aggarwal, Science 2017, 357, 283 – 286.
dc.identifier.citedreferenceR. S. J. Proctor, H. J. Davis, R. J. Phipps, Science 2018, 360, 419 – 422.
dc.identifier.citedreferenceD. Wang, N. Zhu, P. Chen, Z. Lin, G. Liu, J. Am. Chem. Soc. 2017, 139, 15632 – 15635.
dc.identifier.citedreferenceJ. Wang, T. Qin, T.-G. Chen, L. Wimmer, J. T. Edwards, J. Cornella, B. Vokits, S. A. Shaw, P. S. Baran, Angew. Chem. Int. Ed. 2016, 55, 9676 – 9679; Angew. Chem. 2016, 128, 9828 – 9831.
dc.identifier.citedreferenceJ. M. Smith, T. Qin, R. R. Merchant, J. T. Edwards, L. R. Malins, Z. Liu, G. Che, Z. Shen, S. A. Shaw, M. D. Eastgate, P. S. Baran, Angew. Chem. Int. Ed. 2017, 56, 11906 – 11910; Angew. Chem. 2017, 129, 12068 – 12072.
dc.identifier.citedreferenceF. Sandfort, M. J. O’Neill, J. Cornella, L. Wimmer, P. S. Baran, Angew. Chem. Int. Ed. 2017, 56, 3319 – 3323; Angew. Chem. 2017, 129, 3367 – 3371.
dc.identifier.citedreferenceZ. Li, K.-F. Wang, X. Zhao, H. Ti, X.-G. Liu, H. Wang, Nat. Commun. 2020, 11, 5036.
dc.identifier.citedreferenceS. Plunkett, C. H. Basch, S. O. Santana, M. P. Watson, J. Am. Chem. Soc. 2019, 141, 2257 – 2262.
dc.identifier.citedreferenceJ. T. M. Correia, V. A. Fernandes, B. T. Matsuo, J. A. C. Delgado, W. C. De Souza, M. W. Paixão, Chem. Commun. 2020, 56, 503 – 514.
dc.identifier.citedreferenceS. Ni, C.-X. Li, Y. Mao, J. Han, Y. Wang, H. Yan, Y. Pan, Sci. Adv. 2019, 5, eaaw9516.
dc.identifier.citedreferenceC. H. Basch, J. Liao, J. Xu, J. J. Piane, M. P. Watson, J. Am. Chem. Soc. 2017, 139, 5313 – 5316.
dc.identifier.citedreferenceJ. Wu, L. He, A. Noble, V. K. Aggarwal, J. Am. Chem. Soc. 2018, 140, 10700 – 10704.
dc.identifier.citedreferenceF. J. R. Klauck, H. Yoon, M. J. James, M. Lautens, F. Glorius, ACS Catal. 2019, 9, 236 – 241.
dc.identifier.citedreferenceS.-Z. Sun, C. Romano, R. Martin, J. Am. Chem. Soc. 2019, 141, 16197 – 16201.
dc.identifier.citedreferenceD. Kong, P. J. Moon, R. J. Lundgren, Nat. Catal. 2019, 2, 473 – 476.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.