Show simple item record

Field- Aligned Current During an Interval of BY- Dominated Interplanetary- Field; Modeled- to- Observed Comparisons

dc.contributor.authorCarter, J. A.
dc.contributor.authorSamsonov, A. A.
dc.contributor.authorMilan, S. E.
dc.contributor.authorBranduardi-Raymont, G.
dc.contributor.authorRidley, A. J.
dc.contributor.authorPaxton, L. J.
dc.contributor.authorAnderson, B. J.
dc.contributor.authorWaters, C. L.
dc.contributor.authorEdwards, T.
dc.date.accessioned2022-01-06T15:48:39Z
dc.date.available2023-01-06 10:48:35en
dc.date.available2022-01-06T15:48:39Z
dc.date.issued2021-12
dc.identifier.citationCarter, J. A.; Samsonov, A. A.; Milan, S. E.; Branduardi-Raymont, G. ; Ridley, A. J.; Paxton, L. J.; Anderson, B. J.; Waters, C. L.; Edwards, T. (2021). "Field- Aligned Current During an Interval of BY- Dominated Interplanetary- Field; Modeled- to- Observed Comparisons." Journal of Geophysical Research: Space Physics 126(12): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/171149
dc.description.abstractWe model an interval of remarkable interplanetary magnetic field (IMF), for which we have a comprehensive set of observational data. This interval is associated with the arrival of an interplanetary coronal mass ejection. The solar wind densities at the time are particularly high and the IMF is primarily northward over many hours. This results in strong auroral emissions within the polar cap in a cusp spot, which we associate with lobe reconnection at the high- latitude magnetopause. We also observe areas of upwards field- aligned current (FAC) within the summer Northern Hemisphere polar cap that exhibit large current magnitudes. The model can reproduce the spatial distribution of the FACs well, even under changing conditions in the incoming IMF. Discrepancies exist between the modeled and observed current magnitudes. Notably, the winter Southern Hemisphere exhibits much lower current magnitudes overall. We also model a sharp transition of the location of magnetopause reconnection at the beginning of the interval, before the IMF remained northward for many hours. The reconnection location changed rapidly from a subsolar location at the low- latitude magnetopause under southward IMF conditions, to a high- latitude lobe reconnection location when the field is northward. This occurs during a fast rotation of the IMF at the shock front of a magnetic cloud.Plain Language SummaryUnder extreme incoming interplanetary magnetic field conditions following the impact of an Interplanetary Coronal Mass Ejection (CME) on the Earth’s system, we observe a range of phenomena in the Northern Hemisphere ionosphere. This includes auroral emissions in the form of a cusp spot and associated precipitating particles, ionospheric flows, and strong field- aligned currents (FACs) in the high- latitude polar cap. These phenomena change in orientation and strength following variations in the incoming solar wind. We model the state of the magnetosphere during these observations. The modeled currents correspond well spatially with the observed currents, however, the current magnitudes are very different. The modeled FACs indicate that the site of magnetic reconnection can change rapidly from a lower- latitude dayside position to a high- latitude location in the magnetospheric lobes, which is reflected in field orientation within the magnetic cloud associated with the passing CME.Key PointsWe model an interval of interplanetary BY- dominated field and high solar wind densities during the impact of a Coronal Mass EjectionThe reconnection site moves rapidly from the subsolar to the high- latitude magnetopause during a rotation of interplanetary magnetic fieldModeled and observed currents are spatially consistent in the polar cap although modeled to observed current magnitudes are often discrepant
dc.publisherAmerican Geophysical Union (AGU)
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAurora
dc.subject.otherMagnetosphere- ionosphere coupling
dc.subject.otherfield- aligned currents
dc.subject.otherpolar cap phenomena
dc.subject.othermodeling to observation comparison
dc.titleField- Aligned Current During an Interval of BY- Dominated Interplanetary- Field; Modeled- to- Observed Comparisons
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171149/1/jgra56915.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171149/2/jgra56915_am.pdf
dc.identifier.doi10.1029/2021JA029722
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRidley, A., Gombosi, T., & Dezeeuw, D. ( 2004 ). Ionospheric control of the magnetosphere: Conductance. Annales Geophysicae, 22 ( 2 ), 567 - 584. https://doi.org/10.5194/angeo-22-567-2004
dc.identifier.citedreferenceCarter, J. A., Milan, S. E., Fogg, A. R., Sangha, H., Lester, M., Paxton, L. J., & Anderson, B. J. ( 2020 ). The evolution of long- duration cusp spot emission during lobe reconnection with respect to field- aligned currents. Journal of Geophysical Research: Space Physics, 125 ( 7 ), e2020JA027922. https://doi.org/10.1029/2020JA027922
dc.identifier.citedreferenceChisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott, A., et al. ( 2007 ). A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques, and future directions. Surveys in Geophysics, 28, 33 - 109. https://doi.org/10.1007/s10712-007-9017-8
dc.identifier.citedreferenceCowley, S. W. H., & Lockwood, M. ( 1992 ). Excitation and decay of solar wind- driven flows in the magnetosphere- ionosphere system. Annales Geophysicae, 10, 103 - 115.
dc.identifier.citedreferenceCoxon, J., Milan, S., Clausen, L., Anderson, B., & Korth, H. ( 2014 ). A superposed epoch analysis of the regions 1 and 2 Birkeland currents observed by Ampere during substorms. Journal of Geophysical Research: Space Physics.
dc.identifier.citedreferenceDungey, J. W. ( 1963 ). Interactions of solar plasma with the geomagnetic field. Planetary and Space Science, 10, 233 - 237. https://doi.org/10.1016/0032-0633(63)90020-5
dc.identifier.citedreferenceEdwards, T. R., Weimer, D. R., Olsen, N., Lühr, H., Tobiska, W. K., & Anderson, B. J. ( 2020 ). A third- generation field- aligned current model. Journal of Geophysical Research: Space Physics, 125 ( 1 ), e2019JA027249. https://doi.org/10.1029/2019JA027249
dc.identifier.citedreferenceFear, R. C. ( 2021 ). The northward IMF magnetosphere. In Magnetospheres in the solar system (pp. 293 - 309 ). American Geophysical Union (AGU). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/9781119815624.ch19, https://doi.org/10.1002/9781119815624.ch19
dc.identifier.citedreferenceFok, M.- C., Buzulukova, N. Y., Chen, S.- H., Glocer, A., Nagai, T., Valek, P., & Perez, J. D. ( 2014 ). The comprehensive inner magnetosphere- ionosphere model. Journal of Geophysical Research: Space Physics, 119 ( 9 ), 7522 - 7540. https://doi.org/10.1002/2014JA020239
dc.identifier.citedreferenceGordeev, E., Sergeev, V., Honkonen, I., Kuznetsova, M., Rastätter, L., Palmroth, M., et al. ( 2015 ). Assessing the performance of community- available global MHD models using key system parameters and empirical relationships. Space Weather, 13 ( 12 ), 868 - 884. https://doi.org/10.1002/2015SW001307
dc.identifier.citedreferenceGrocott, A., Badman, S., Cowley, S., Yeoman, T., & Cripps, P. ( 2004 ). The influence of IMF B y on the nature of the nightside high- latitude ionospheric flow during intervals of positive IMF B z. Annales Geophysicae, 22, 1755 - 1764. https://doi.org/10.5194/angeo-22-1755-2004
dc.identifier.citedreferenceGrocott, A., Cowley, S. W. H., & Sigwarth, J. B. ( 2003 ). Ionospheric flow during extended intervals of northward but B y - dominated IMF. Annales Geophysicae, 21, 509 - 538. https://doi.org/10.5194/angeo-21-509-2003
dc.identifier.citedreferenceHeppner, J. P., & Maynard, N. C. ( 1987 ). Empirical high- latitude electric field models. Journal of Geophysical Research: Space Physics, 92 ( A5 ), 4467 - 4489. https://doi.org/10.1029/JA092iA05p04467
dc.identifier.citedreferenceKing, J. H., & Papitashvili, N. E. ( 2005 ). Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. Journal of Geophysical Research: Space Physics, 110, 2104. https://doi.org/10.1029/2004JA010649
dc.identifier.citedreferenceLu, G., Li, W. H., Raeder, J., Deng, Y., Rich, F., Ober, D., et al. ( 2011 ). Reversed two- cell convection in the northern and southern hemispheres during northward interplanetary magnetic field. Journal of Geophysical Research: Space Physics, 116 ( A12 ). https://doi.org/10.1029/2011JA017043
dc.identifier.citedreferenceMilan, S. E., Clausen, L. B. N., Coxon, J. C., Carter, J. A., Walach, M.- T., Laundal, K., et al. ( 2017 ). Overview of solar wind- magnetosphere- ionosphere- atmosphere coupling and the generation of magnetospheric currents. Space Science Reviews, 206, 547 - 573. https://doi.org/10.1007/s11214-017-0333-0
dc.identifier.citedreferencePaxton, L. J., Meng, C.- I., Fountain, G. H., Ogorzalek, B. S., Darlington, E. H., Gary, S. A., et al. ( 1992 ). Special Sensor Ultraviolet Spectrographic Imager (SSUSI)- An instrument description. In S. Chakrabarti, & A. B. Christensen (Eds.), Instrumentation for planetary and terrestrial atmospheric remote sensing (Vol. 1745, pp. 2 - 15 ). https://doi.org/10.1117/12.60595
dc.identifier.citedreferencePaxton, L. J., & Zhang, Y. ( 2016 ). Far ultraviolet imaging of the aurora. In Space weather fundamentals. CRC Press.
dc.identifier.citedreferenceRaab, W., Branduardi- Raymont, G., Wang, C., Dai, L., Donovan, E., Enno, G., et al. ( 2016 ). SMILE: A joint ESA/CAS mission to investigate the interaction between the solar wind and Earth- s magnetosphere. In J.- W. A. den Herder, T. Takahashi, & M. Bautz (Eds.), Space telescopes and instrumentation 2016: Ultraviolet to gamma ray (Vol. 9905, pp. 1 - 9 ). SPIE. https://doi.org/10.1117/12.2231984
dc.identifier.citedreferenceRidley, A. J., De Zeeuw, D. L., & Rastätter, L. ( 2016 ). Rating global magnetosphere model simulations through statistical data- model comparisons. Space Weather, 14 ( 10 ), 819 - 834. https://doi.org/10.1002/2016SW001465
dc.identifier.citedreferenceRidley, A. J., Gombosi, T. I., Sokolov, I. V., Tóth, G., & Welling, D. T. ( 2010 ). Numerical considerations in simulating the global magnetosphere. Annales Geophysicae, 28 ( 8 ), 1589 - 1614. https://doi.org/10.5194/angeo-28-1589-2010
dc.identifier.citedreferenceSamsonov, A. A., Sibeck, D. G., & Yu, Y. ( 2010 ). Transient changes in magnetospheric- ionospheric currents caused by the passage of an interplanetary shock: Northward interplanetary magnetic field case. Journal of Geophysical Research: Space Physics, 115 ( A5 ). https://doi.org/10.1029/2009JA014751
dc.identifier.citedreferenceSandholt, P. E., Farrugia, C. J., Moen, J., Noraberg, O., Lybekk, B., Sten, T., & Hansen, T. ( 1998 ). A classification of dayside auroral forms and activities as a function of interplanetary magnetic field orientation. Journal of Geophysical Research, 103 ( A10 ), 23325 - 23345. https://doi.org/10.1029/98JA02156
dc.identifier.citedreferenceShue, J.- H., & Song, P. ( 2002 ). The location and shape of the magnetopause. Planetary and Space Science, 50, 549 - 558. https://doi.org/10.1016/S0032-0633(02)00034-X
dc.identifier.citedreferenceShue, J.- H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., et al. ( 1998 ). Magnetopause location under extreme solar wind conditions. Journal of Geophysical Research, 103, 17691 - 17700. https://doi.org/10.1029/98JA01103
dc.identifier.citedreferenceSiscoe, G. L., Crooker, N. U., Erickson, G. M., Sonnerup, B. U. à ., Siebert, K. D., Weimer, D. R., et al. ( 2000 ). Global geometry of magnetospheric currents inferred from MHD simulations. American Geophysical Union Geophysical Monograph Series (Vol. 118 ), 41. https://doi.org/10.1029/GM118p0041
dc.identifier.citedreferenceTóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R., De Zeeuw, D. L., et al. ( 2005 ). Space weather modeling framework: A new tool for the space science community. Journal of Geophysical Research, 110 ( A12 ). https://doi.org/10.1029/2005JA011126
dc.identifier.citedreferenceWaters, C. L., Anderson, B. J., Green, D. L., Korth, H., Barnes, R. J., & Vanhamaki, H. ( 2020 ). Science data products for AMPERE. In M. W. Dunlopm, H. luhr (Eds.), Ionospheric multi- spacecraft analysis tools (pp. 141 - 165 ). Springer Nature. https://doi.org/10.1007/978-3-030-26732-2
dc.identifier.citedreferenceWaters, C. L., Anderson, B. J., & Liou, K. ( 2001 ). Estimation of global field- aligned currents using the iridium® system magnetometer data. Geophysical Research Letters, 28, 2165 - 2168. https://doi.org/10.1029/2000GL012725
dc.identifier.citedreferenceYu, Y., & Ridley, A. J. ( 2009 ). The response of the magnetosphere- ionosphere system to a sudden dynamic pressure enhancement under southward IMF conditions. Annales Geophysicae, 27 ( 12 ), 4391 - 4407. https://doi.org/10.5194/angeo-27-4391-2009
dc.identifier.citedreferenceAnderson, B. J., Takahashi, K., & Toth, B. A. ( 2000 ). Sensing global Birkeland currents with iridium® engineering magnetometer data. Geophysical Research Letters, 27, 4045 - 4048. https://doi.org/10.1029/2000GL000094
dc.identifier.citedreferenceBranduardi- Raymont, G., Wang, C., Escoubet, C. P., Adamovic, M., Agnolon, D., Berthomier, M., et al. ( 2018 ). SMILE definition study report, European Space Agency, ESA/SCI. In Smile definition study report (p. 1 - 86 ). https://doi.org/10.5270/esa.smile.definition_study_report-2018-12
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.