Show simple item record

Automatic assessment of human gastric motility and emptying from dynamic 3D magnetic resonance imaging

dc.contributor.authorLu, Kun-Han
dc.contributor.authorLiu, Zhongming
dc.contributor.authorJaffey, Deborah
dc.contributor.authorWo, John M.
dc.contributor.authorMosier, Kristine M.
dc.contributor.authorCao, Jiayue
dc.contributor.authorWang, Xiaokai
dc.contributor.authorPowley, Terry L.
dc.date.accessioned2022-01-06T15:49:24Z
dc.date.available2023-02-06 10:49:23en
dc.date.available2022-01-06T15:49:24Z
dc.date.issued2022-01
dc.identifier.citationLu, Kun-Han ; Liu, Zhongming; Jaffey, Deborah; Wo, John M.; Mosier, Kristine M.; Cao, Jiayue; Wang, Xiaokai; Powley, Terry L. (2022). "Automatic assessment of human gastric motility and emptying from dynamic 3D magnetic resonance imaging." Neurogastroenterology & Motility (1): n/a-n/a.
dc.identifier.issn1350-1925
dc.identifier.issn1365-2982
dc.identifier.urihttps://hdl.handle.net/2027.42/171173
dc.description.abstractBackgroundTime- sequenced magnetic resonance imaging (MRI) of the stomach is an emerging technique for non- invasive assessment of gastric emptying and motility. However, an automated and systematic image processing pipeline for analyzing dynamic 3D (ie, 4D) gastric MRI data has not been established. This study uses an MRI protocol for imaging the stomach with high spatiotemporal resolution and provides a pipeline for assessing gastric emptying and motility.MethodsDiet contrast- enhanced MRI images were acquired from seventeen healthy humans after they consumed a naturalistic contrast meal. An automated image processing pipeline was developed to correct for respiratory motion, to segment and compartmentalize the lumen- enhanced stomach, to quantify total gastric and compartmental emptying, and to compute and visualize gastric motility on the luminal surface of the stomach.Key ResultsThe gastric segmentation reached an accuracy of 91.10 ± 0.43% with the Type- I error and Type- II error being 0.11 ± 0.01% and 0.22 ± 0.01%, respectively. Gastric volume decreased 34.64 ± 2.8% over 1 h where the emptying followed a linear- exponential pattern. The gastric motility showed peristaltic patterns with a median = 4 wave fronts (range 3- 6) and a mean frequency of 3.09 ± 0.07 cycles per minute. Further, the contractile amplitude was stronger in the antrum than in the corpus (antrum vs. corpus: 5.18 ± 0.24 vs. 3.30 ± 0.16 mm; p < 0.001).Conclusions & InferencesOur analysis pipeline can process dynamic 3D MRI images and produce personalized profiles of gastric motility and emptying. It will facilitate the application of MRI for monitoring gastric dynamics in research and clinical settings.Automatic MRI assessment of human gastric motility and emptying: We present a robust methodology for using high- resolution contrast- enhanced magnetic resonance imaging (MRI) to non- invasively and quantitatively assess gastric emptying and motility in healthy humans. Our algorithms collect 3D MRI scans in real time and provide a high- resolution mapping of motility patterns onto the 3D- reconstructed GI tract.
dc.publisherJohn Wiley Sons
dc.subject.otherluminal wall motion analysis
dc.subject.othermagnetic resonance imaging
dc.subject.otherrespiratory motion correction
dc.subject.otherimage segmentation
dc.subject.othergastric emptying
dc.subject.othergastric motility
dc.titleAutomatic assessment of human gastric motility and emptying from dynamic 3D magnetic resonance imaging
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171173/1/nmo14239_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171173/2/nmo14239.pdf
dc.identifier.doi10.1111/nmo.14239
dc.identifier.sourceNeurogastroenterology & Motility
dc.identifier.citedreferenceSclocco R, Nguyen C, Staley R, et al. Non- uniform gastric wall kinematics revealed by 4D Cine magnetic resonance imaging in humans. Neurogastroenterol Motil. 2021; e14146.
dc.identifier.citedreferenceBanerjee S, Dixit S, Fox M, Pal A. Validation of a rapid, semiautomatic image analysis tool for measurement of gastric accommodation and emptying by magnetic resonance imaging. Am J Physiol- Gastrointest Liver Physiol. 2015; 308 ( 8 ): G652 - G663.
dc.identifier.citedreferenceBanerjee S, Pal A, Fox M. Volume and position change of the stomach during gastric accommodation and emptying: a detailed three- dimensional morphological analysis based on MRI. Neurogastroenterol Motil. 2020; 32 ( 8 ): e13865.
dc.identifier.citedreferenceBickelhaupt S, Froehlich JM, Cattin R, et al. Software- supported evaluation of gastric motility in MRI: a feasibility study. J Med Imaging Radiat Oncol. 2014; 58 ( 1 ): 11 - 17.
dc.identifier.citedreferenceMenys A, Hoad C, Spiller R, et al. Spatio- temporal motility MRI analysis of the stomach and colon. Neurogastroenterol Motil. 2019; 31 ( 5 ): 1 - 9.
dc.identifier.citedreferenceRueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ. Nonrigid registration using free- form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999; 18 ( 8 ): 712 - 721.
dc.identifier.citedreferenceMyronenko A, Song X. Intensity- based image registration by minimizing residual complexity. IEEE Trans Med Imaging. 2010; 29 ( 11 ): 1882 - 1891.
dc.identifier.citedreferenceLankton S, Tannenbaum A. Localizing region- based active contours. IEEE Trans image Process. 2008; 17 ( 11 ): 2029 - 2039.
dc.identifier.citedreferenceAmberg B. Optimal step Nonrigid ICP algorithms for surface registration. CVPR. 2007; 1 - 8.
dc.identifier.citedreferenceHill DLG, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol. 2001; 46 ( 3 ): R1.
dc.identifier.citedreferencePower JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012; 59 ( 3 ): 2142 - 2154.
dc.identifier.citedreferenceFleiss JL, Levin B, Paik MC. The measurement of interrater agreement. Stat methods rates proportions. 1981; 2 ( 212- 236 ): 22 - 23.
dc.identifier.citedreferenceBland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 327 ( 8476 ): 307 - 310.
dc.identifier.citedreferenceO- Grady G, Du P, Cheng LK, et al. Origin and propagation of human gastric slow- wave activity defined by high- resolution mapping. Am J Physiol Gastrointest Liver Physiol. 2010; 299 ( 3 ): G585 - G592.
dc.identifier.citedreferencePan D, Schmieder AH, Wickline SA, Lanza GM. Manganese- based MRI contrast agents: past, present and future. Tetrahedron. 2011; 67 ( 44 ): 8431.
dc.identifier.citedreferenceHoad CL, Parker H, Hudders N, et al. Measurement of gastric meal and secretion volumes using magnetic resonance imaging. Phys Med Biol. 2015; 60 ( 3 ): 1367 - 1383.
dc.identifier.citedreferenceZarrini M, Seilanian Toosi F, Davachi B, Nekooei S. Natural oral contrast agents for gastrointestinal magnetic resonance imaging. Rev Clin Med. 2015; 2 ( 4 ): 200 - 204.
dc.identifier.citedreferenceElsayed NM, Alsalem SA, Almugbel SAA, Alsuhaimi MM. Effectiveness of natural oral contrast agents in magnetic resonance imaging of the bowel. Egypt J Radiol Nucl Med. 2015; 46 ( 2 ): 287 - 292.
dc.identifier.citedreferenceKwiatek MA, Menne D, Steingoetter A, et al. Effect of meal volume and calorie load on postprandial gastric function and emptying: studies under physiological conditions by combined fiber- optic pressure measurement and MRI. AJP Gastrointest Liver Physiol. 2009; 297 ( 5 ): G894 - G901.
dc.identifier.citedreferenceMarciani L, Gowland PA, Spiller RC, et al. Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. Am J Physiol Gastrointest Liver Physiol. 2001; 280 ( 6 ): G1227 - G1233.
dc.identifier.citedreferenceZinsmeister AR, Bharucha AE, Camilleri M. Comparison of calculations to estimate gastric emptying half- time of solids in humans. Neurogastroenterol Motil. 2012; 24 ( 12 ): 1142 - 1145.
dc.identifier.citedreferenceMenys A, Hamy V, Makanyanga J, et al. Dual registration of abdominal motion for motility assessment in free- breathing data sets acquired using dynamic MRI. Phys Med Biol. 2014; 59 ( 16 ): 4603 - 4619.
dc.identifier.citedreferenceDeng Z, Pang J, Yang W, et al. Four- dimensional MRI using three- dimensional radial sampling with respiratory self- gating to characterize temporal phase- resolved respiratory motion in the abdomen. Magn Reson Med. 2016; 75 ( 4 ): 1574 - 1585.
dc.identifier.citedreferenceCho J, Jin Y, Id L, et al. Quantitative MRI evaluation of gastric motility in patients with Parkinson- s disease: correlation of dyspeptic symptoms with volumetry and motility indices. PLoS One. 2019; 14 ( 5 ): 1 - 14.
dc.identifier.citedreferencede Jonge CS, Sprengers AMJ, van Rijn KL, Nederveen AJ, Stoker J. Assessment of fasted and fed gastrointestinal contraction frequencies in healthy subjects using continuously tagged MRI. Neurogastroenterol Motil. 2020; 32 ( 2 ): 1 - 8.
dc.identifier.citedreferenceOrthey P, Dadparvar S, Kamat B, Parkman HP, Maurer AH. Using gastric emptying scintigraphy to evaluate antral contractions and duodenal bolus propagation. Am J Physiol Gastrointest Liver Physiol. 2020; 318 ( 1 ): G203 - G209.
dc.identifier.citedreferencePatcharatrakul T, Gonlachanvit S. Technique of functional and motility test: How to perform antroduodenal manometry. J Neurogastroenterol Motil. 2013; 19 ( 3 ): 395 - 404.
dc.identifier.citedreferenceWolpert N, Rebollo I, Tallon- Baudry C. Electrogastrography for psychophysiological research: practical considerations, analysis pipeline, and normative data in a large sample. Psychophysiology. 2020; 57 ( 9 ): e13599.
dc.identifier.citedreferenceModat M, McClelland J, Ourselin S. Lung registration using the NiftyReg package. Med image Anal Clin Gd Chall. 2010; 33 - 42.
dc.identifier.citedreferenceDuthie G, Gardner A. Physiology of the Gastrointestinal Tract. John Wiley Sons; 2006.
dc.identifier.citedreferenceTack J, Bisschops R, Sarnelli G. Pathophysiology and treatment of functional dyspepsia. Gastroenterology. 2004; 127 ( 4 ): 1239 - 1255.
dc.identifier.citedreferenceCamilleri M, Chedid V, Ford AC, et al. Gastroparesis. Nat Rev Dis Prim. 2018; 4 ( 1 ): 1 - 19.
dc.identifier.citedreferenceTack J, Arts J, Caenepeel P, De Wulf D, Bisschops R. Pathophysiology, diagnosis and management of postoperative dumping syndrome. Nat Rev Gastroenterol Hepatol. 2009; 6 ( 10 ): 583.
dc.identifier.citedreferenceHyman PE, Napolitano JA, Diego A, et al. Antroduodenal manometry in the evaluation of chronic functional gastrointestinal symptoms. Pediatrics. 1990; 86 ( 1 ): 39 - 44.
dc.identifier.citedreferenceAzpiroz F, Malagelada J- R. Gastric tone measured by an electronic barostat in health arid postsurgical gastroparesis. Gastroenterology. 1987; 92 ( 4 ): 934 - 943.
dc.identifier.citedreferenceMaes BD, Geypens BJ, Ghoos YF, Hiele MI, Rutgeerts PJ. 13C- octanoic acid breath test for gastric emptying rate of solids. Gastroenterology. 1998; 114 ( 4 ): 856 - 857.
dc.identifier.citedreferenceAbell TL, Camilleri M, Donohoe K, et al. Consensus recommendations for gastric emptying scintigraphy: a joint report of the American neurogastroenterology and motility society and the society of nuclear medicine. J Nucl Med Technol. 2008; 36 ( 1 ): 44 - 54.
dc.identifier.citedreferenceSchwizer W, Steingoetter A, Fox M. Magnetic resonance imaging for the assessment of gastrointestinal function. Scand J Gastroenterol. 2006; 41 ( 11 ): 1245 - 1260.
dc.identifier.citedreferenceDe Zwart IM, De Roos A. MRI for the evaluation of gastric physiology. Eur Radiol. 2010; 20 ( 11 ): 2609 - 2616.
dc.identifier.citedreferenceMarciani L. Assessment of gastrointestinal motor functions by MRI: a comprehensive review. Neurogastroenterol Motil. 2011; 23 ( 5 ): 399 - 407.
dc.identifier.citedreferencede Jonge CS, Smout AJPM, Nederveen AJ, Stoker J. Evaluation of gastrointestinal motility with MRI: Advances, challenges and opportunities. Neurogastroenterol Motil. 2018; 30 ( 1 ): e13257.
dc.identifier.citedreferenceHamilton J, Franson D, Seiberlich N. Recent advances in parallel imaging for MRI. Prog Nucl Magn Reson Spectrosc. 2017; 101: 71 - 95.
dc.identifier.citedreferenceSmith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004; 23: S208 - S219.
dc.identifier.citedreferenceAlmutairi HM, Khanji MY, Boubertakh R, Miquel ME, Petersen SE. A comparison of cardiac motion analysis software packages: application to left ventricular deformation analysis in healthy subjects. J Cardiovasc Magn Reson. 2016; 18 ( 422 ); 47.
dc.identifier.citedreferenceBharucha AE, Karwoski RA, Fidler J, et al. Comparison of manual and semiautomated techniques for analyzing gastric volumes with MRI in humans. AJP Gastrointest Liver Physiol. 2014; 307 ( 5 ): G582 - G587.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.