Show simple item record

Infant gut bacterial community composition and food‐related manifestation of atopy in early childhood

dc.contributor.authorJoseph, Christine LM
dc.contributor.authorSitarik, Alexandra R.
dc.contributor.authorKim, Haejin
dc.contributor.authorHuffnagle, Gary
dc.contributor.authorFujimura, Kei
dc.contributor.authorYong, Germaine Jia Min
dc.contributor.authorLevin, Albert M.
dc.contributor.authorZoratti, Edward
dc.contributor.authorLynch, Susan
dc.contributor.authorOwnby, Dennis R.
dc.contributor.authorLukacs, Nicholas W.
dc.contributor.authorDavidson, Brent
dc.contributor.authorBarone, Charles
dc.contributor.authorCole Johnson, Christine
dc.date.accessioned2022-01-06T15:49:30Z
dc.date.available2023-02-06 10:49:29en
dc.date.available2022-01-06T15:49:30Z
dc.date.issued2022-01
dc.identifier.citationJoseph, Christine LM; Sitarik, Alexandra R.; Kim, Haejin; Huffnagle, Gary; Fujimura, Kei; Yong, Germaine Jia Min; Levin, Albert M.; Zoratti, Edward; Lynch, Susan; Ownby, Dennis R.; Lukacs, Nicholas W.; Davidson, Brent; Barone, Charles; Cole Johnson, Christine (2022). "Infant gut bacterial community composition and food‐related manifestation of atopy in early childhood." Pediatric Allergy and Immunology (1): n/a-n/a.
dc.identifier.issn0905-6157
dc.identifier.issn1399-3038
dc.identifier.urihttps://hdl.handle.net/2027.42/171176
dc.description.abstractBackgroundImmunoglobulin E–mediated food allergy (IgE‐FA) has emerged as a global public health concern. Immune dysregulation is an underlying mechanism for IgE‐FA, caused by “dysbiosis” of the early intestinal microbiota. We investigated the association between infant gut bacterial composition and food‐related atopy at age 3–5 years using a well‐characterized birth cohort.MethodsThe study definition of IgE‐FA to egg, milk, or peanut was based on physician panel retrospective review of clinical and questionnaire data collected from birth through age 3–5 years. Using 16S rRNA sequencing, we profiled the bacterial gut microbiota present in stool specimens collected at 1 and 6 months of age.ResultsOf 447 infants with data for analysis, 44 (9.8%) met physician panel review criteria for IgE‐FA to ≥1 of the three allergens. Among children classified as IgE‐FA at 3–5 years, infant stool samples showed significantly less diversity of the gut microbiota compared with the samples of children classified as no IgE‐FA at age 3–5 years, especially for milk and peanut (all covariate‐adjusted p’s for alpha metrics <.007). Testing of individual operational taxonomic units (OTUs) revealed 6‐month deficiencies in 31 OTUs for IgE‐FA compared with no IgE‐FA, mostly in the orders Lactobacillales, Bacteroidales, and Clostridiales.ConclusionsVariations in gut microbial composition in infant stool were associated with a study definition of IgE‐FA at 3–5 years of age. This included evidence of a lack of bacterial diversity, deficiencies in specific OTUs, and delayed microbial maturation. Results support dysbiosis in IgE‐FA pathogenesis.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherIgE
dc.subject.otherfood allergy
dc.subject.othermicrobiome
dc.titleInfant gut bacterial community composition and food‐related manifestation of atopy in early childhood
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAllergy and Clinical Immunology
dc.subject.hlbsecondlevelPediatrics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171176/1/pai13704.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171176/2/pai13704_am.pdf
dc.identifier.doi10.1111/pai.13704
dc.identifier.sourcePediatric Allergy and Immunology
dc.identifier.citedreferenceLiaw A, Wiener M. Classification and regression by randomForest. R News. 2002; 2: 18 ‐ 22.
dc.identifier.citedreferenceGupta RS, Warren CM, Smith BM, et al. The public health impact of parent‐reported childhood food allergies in the United States. Pediatrics. 2018; 142 ( 6 ): e20181235.
dc.identifier.citedreferenceGupta RS, Springston EE, Warrier MR, et al. The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics. 2011; 128: e9 ‐ e17.
dc.identifier.citedreferenceSicherer SH, Sampson HA. Food allergy: a review and update on epidemiology parthenogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol. 2017; 141: 41 ‐ 58.
dc.identifier.citedreferenceMaynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012; 489: 231 ‐ 241.
dc.identifier.citedreferenceYu W, Freeland DMH, Nadeau KC. Food allergy: immune mechanisms, diagnosis and immunotherapy. Nat Rev Immunol. 2016; 16: 751.
dc.identifier.citedreferenceLing Z, Li Z, Liu X, et al. Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol. 2014; 80: 2546 ‐ 2554.
dc.identifier.citedreferenceFeehley T, Plunkett CH, Bao R, et al. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat Med. 2019; 25: 448 ‐ 453.
dc.identifier.citedreferenceBunyavanich S, Shen N, Grishin A, et al. Early‐life gut microbiome composition and milk allergy resolution. Allergy Clin Immunol. 2016; 138: 1122 ‐ 1130.
dc.identifier.citedreferenceLevin AM, Sitarik AR, Havstad SL, et al. Joint effects of pregnancy, sociocultural, and environmental factors on early life gut microbiome structure and diversity. Sci Rep. 2016; 6: 31775.
dc.identifier.citedreferenceSitarik AR, Arora M, Austin C, et al. Fetal and early postnatal lead exposure measured in teeth associates with infant gut microbiota. Environ Int. 2020; 144: 106062.
dc.identifier.citedreferenceEzell JM, Ownby DR, Zoratti EM, et al. Using a physician panel to estimate food allergy prevalence in a longitudinal birth cohort. Ann Epidemiol. 2014; 24: 551 ‐ 553.
dc.identifier.citedreferenceBoyce JA, Assa’ad A, Burks AW, et al. Guidelines for the diagnosis and management of food allergy in the United States: summary of the NIAID‐sponsored expert panel report. J Allergy Clin Immunol. 2010; 126: 1105 ‐ 1118.
dc.identifier.citedreferenceSampson HA. Utility of food‐specific IgE concentrations in predicting symptomatic food allergy. J Allergy Clin Immunol. 2001; 107: 891 ‐ 896.
dc.identifier.citedreferenceCaporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high‐throughput community sequencing data. Nat Methods. 2010; 7: 335 ‐ 336.
dc.identifier.citedreferenceOksanen J, Blanchet G, Friendly M, et al. vegan: Community ecology package. R Package Version. 2016; 2 ( 4‐4 ): 2017.
dc.identifier.citedreferenceLozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005; 71: 8228 ‐ 8235.
dc.identifier.citedreferenceBenjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. Series B (Methodological). 1995; 289 ‐ 300.
dc.identifier.citedreferenceSubramanian S, Huq S, Yatsunenko T, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014; 510: 417 ‐ 421.
dc.identifier.citedreferenceGEEmediate: Mediation Analysis for Generalized Linear Models Using the Difference Method. R package version 1.1.3. Accessed 2019. https://www.GEEmediate.pdf(r‐project.org)
dc.identifier.citedreferenceWang RX, Lee JS, Campbell EL, Colgan SP. Microbiota‐derived butyrate dynamically regulates intestinal homeostasis through regulation of actin‐associated protein synaptopodin. Proc Natl Acad Sci. 2020; 117: 11648 ‐ 11657.
dc.identifier.citedreferenceThompson‐Chagoyan OC, Fallani M, Maldonado J, et al. Faecal microbiota and short‐chain fatty acid levels in faeces from infants with Cow‘s milk protein allergy. Int Arch Allergy Immunol. 2011; 156: 325 ‐ 332.
dc.identifier.citedreferenceChen CC, Chen KJ, Kong MS, Chang HJ, Huang JL. Alterations in the gut microbiota of children with food sensitization in early life. Pediatr Allergy Immunol. 2016; 27: 254 ‐ 262.
dc.identifier.citedreferenceAzad MB, Konya T, Guttman DS, et al. Infant gut microbiota and food sensitization: associations in the first year of life. Clin Exp Allergy. 2015; 45: 632 ‐ 643.
dc.identifier.citedreferenceStokholm J, Blaser MJ, Thorsen J, et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun. 2018; 9: 141.
dc.identifier.citedreferenceSavage JH, Lee‐Sarwar KA, Sordillo J, et al. A prospective microbiome‐wide association study of food sensitization and food allergy in early childhood. Allergy. 2018; 73: 145 ‐ 152.
dc.identifier.citedreferenceZhang Y, Jin S, Wang J, et al. Variations in early gut microbiome are associated with childhood eczema. FEMS Microbiol Lett. 2019; 366: fnz020.
dc.identifier.citedreferencePetersen E, Skov L, Thyssen JP, Jensen P. Role of the gut microbiota in atopic dermatitis: a systematic review. Acta Derm Venereol. 2019; 99: 5 ‐ 11.
dc.identifier.citedreferenceTa LDH, Chan JCY, Yap GC, et al. A compromised developmental trajectory of the infant gut microbiome and metabolome in atopic eczema. Gut Microbes. 2020; 12: 1801964.
dc.identifier.citedreferenceLloyd‐Price J, Abu‐Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016; 8: 1 ‐ 11.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.