Show simple item record

Improved Estimation of Glacial‐Earthquake Size Through New Modeling of the Seismic Source

dc.contributor.authorOlsen, Kira G.
dc.contributor.authorNettles, Meredith
dc.contributor.authorCathles, L. Mac
dc.contributor.authorBurton, Justin C.
dc.contributor.authorMurray, Tavi
dc.contributor.authorJames, Timothy D.
dc.date.accessioned2022-01-06T15:49:32Z
dc.date.available2023-01-06 10:49:30en
dc.date.available2022-01-06T15:49:32Z
dc.date.issued2021-12
dc.identifier.citationOlsen, Kira G.; Nettles, Meredith; Cathles, L. Mac; Burton, Justin C.; Murray, Tavi; James, Timothy D. (2021). "Improved Estimation of Glacial‐Earthquake Size Through New Modeling of the Seismic Source." Journal of Geophysical Research: Earth Surface 126(12): n/a-n/a.
dc.identifier.issn2169-9003
dc.identifier.issn2169-9011
dc.identifier.urihttps://hdl.handle.net/2027.42/171177
dc.description.abstractThe number of gigaton‐sized iceberg‐calving events occurring annually at Greenland glaciers is increasing, part of a larger trend of accelerating mass loss from the Greenland Ice Sheet. Though visual observation of large calving events is rare, ∼60 glacial earthquakes generated by these calving events are currently recorded each year by regional and global seismic stations. An empirical relationship between iceberg size and MCSF, a summary measure of glacial‐earthquake size, was recently demonstrated by Olsen and Nettles (2019), https://doi.org/10.1029/2019JF005054. However, MCSF is known to be sensitive to choices made in modeling the seismic source. We incorporate constraints on the seismic source from laboratory studies of calving and test multiple source time functions using synthetic and observed glacial‐earthquake waveforms. We find that a simple, fixed time function with a shape informed by laboratory results greatly improves estimates of earthquake size. The average ratio of estimated to true peak force values is 1.03 for experiments using our preferred source model, compared with an average of 0.3 for models used in previous studies. We find that maximum‐force values estimated from waveform modeling depend far less on model choices than does MCSF, and therefore prefer maximum force as a measure of glacial‐earthquake size. Using both synthetic and real data, we confirm a correlation between maximum force and iceberg mass. Our results support the possibility of developing useful scaling relationships between seismic observables and physical parameters controlling glacier calving.Plain Language SummaryThe Greenland Ice Sheet is losing ice mass. About half of that ice is lost when large icebergs break off, or calve, from the fronts of glaciers into the ocean. Knowing the sizes of these icebergs would be valuable, but iceberg calving is rarely captured on camera. However, the largest icebergs produce seismic signals when they calve, referred to as glacial earthquakes. We investigate the relationship between the size of an iceberg and the magnitude of the glacial earthquake it produces, building new models to describe the forces that generate a glacial earthquake. Previously, most details of the force evolution during iceberg calving were unknown. We use observations from laboratory experiments conducted using a plastic block in a tank of water, built to mimic the glacier‐ocean setting. We find that incorporating information from these laboratory experiments into our seismic model greatly improves estimates of earthquake size. Using our new models, we confirm a correlation between glacial‐earthquake magnitude and iceberg size, and show that our improved estimates are likely to be more realistic. Our results suggest that using seismic information to estimate iceberg size and related quantities is a promising path forward.Key PointsA physics‐based source model for glacial‐earthquake modeling improves recovery of seismic‐magnitude valuesMaximum force is less sensitive to model choices than MCSF and is preferred for describing glacial‐earthquake sizeA rapid force reversal during iceberg calving is the most important feature to capture in a glacial‐earthquake source model
dc.publisherWiley Periodicals, Inc.
dc.subject.otherglacial earthquake
dc.subject.otherice seismicity
dc.subject.otherGreenland
dc.subject.otherseismic source
dc.subject.othercalving
dc.subject.othericeberg
dc.titleImproved Estimation of Glacial‐Earthquake Size Through New Modeling of the Seismic Source
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171177/1/jgrf21471_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171177/2/jgrf21471.pdf
dc.identifier.doi10.1029/2021JF006384
dc.identifier.sourceJournal of Geophysical Research: Earth Surface
dc.identifier.citedreferenceMurray, T., Selmes, N., James, T. D., Edwards, S., Martin, I., O’Farrell, T., et al. ( 2015 ). Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland. Journal of Geophysical Research: Earth Surface, 120 ( 6 ), 964 – 982. https://doi.org/10.1002/2015JF003531
dc.identifier.citedreferenceEkström, G. ( 2011 ). A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25–250 s. Geophysical Journal International, 187 ( 3 ), 1668 – 1686. https://doi.org/10.1111/j.1365-246X.2011.05225.x
dc.identifier.citedreferenceEkström, G., & Nettles, M. ( 2014 ). Long‐period moment‐tensor inversion: The global CMT project. Encyclopedia of Earthquake Engineering, 1, 1 – 13. https://doi.org/10.1007/978-3-642-36197-5_291-1
dc.identifier.citedreferenceEkström, G., Nettles, M., & Abers, G. A. ( 2003 ). Glacial earthquakes. Science, 302 ( 5645 ), 622 – 624. https://doi.org/10.1126/science.1088057
dc.identifier.citedreferenceEkström, G., Nettles, M., & Dziewoński, A. M. ( 2012 ). The global CMT project 2004–2010: Centroid‐moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1 – 9. https://doi.org/10.1016/j.pepi.2012.04.002
dc.identifier.citedreferenceEkström, G., Nettles, M., & Tsai, V. C. ( 2006 ). Seasonality and increasing frequency of Greenland glacial earthquakes. Science, 311 ( 5768 ), 1756 – 1758. https://doi.org/10.1126/science.1122112
dc.identifier.citedreferenceEkström, G., & Stark, C. P. ( 2013 ). Simple scaling of catastrophic landslide dynamics. Science, 339 ( 6126 ), 1416 – 1419. https://doi.org/10.1126/science.1232887
dc.identifier.citedreferenceEnderlin, E. M., Howat, I. M., Jeong, S., Noh, M.‐J., Angelen, J. H., & van den Broeke, M. R. ( 2014 ). An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41 ( 3 ), 866 – 872. https://doi.org/10.1002/2013GL059010
dc.identifier.citedreferenceHeller, V., Chen, F., Brühl, M., Gabl, R., Chen, X., Wolters, G., & Fuchs, H. ( 2019 ). Large‐scale experiments into the tsunamigenic potential of different iceberg calving mechanisms. Scientific Reports, 9 ( 1 ), 1 – 10. https://doi.org/10.1038/s41598-018-36634-3
dc.identifier.citedreferenceHunter, J. D. ( 2007 ). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9 ( 03 ), 90 – 95. https://doi.org/10.1109/MCSE.2007.55
dc.identifier.citedreferenceJames, T. D., Murray, T., Selmes, N., Scharrer, K., & O’Leary, M. ( 2014 ). Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier. Nature Geoscience, 7 ( 8 ), 593 – 596. https://doi.org/10.1038/NGEO2204
dc.identifier.citedreferenceKawakatsu, H. ( 1989 ). Centroid single force inversion of seismic waves generated by landslides. Journal of Geophysical Research: Solid Earth, 94 ( B9 ), 12363 – 12374. https://doi.org/10.1029/JB094iB09p12363
dc.identifier.citedreferenceMacAyeal, D. R., Abbot, D. S., & Sergienko, O. V. ( 2011 ). Iceberg‐capsize tsunamigenesis. Annals of Glaciology, 52 ( 58 ), 51 – 56. https://doi.org/10.3189/172756411797252103
dc.identifier.citedreferenceMoon, T., Joughin, I., Smith, B. E., & Howat, I. M. ( 2012 ). 21st‐century evolution of Greenland outlet glacier velocities. Science, 336 ( 6081 ), 576 – 578. https://doi.org/10.1126/science.1219985
dc.identifier.citedreferenceMurray, T., Nettles, M., Selmes, N., Cathles, L. M., Burton, J. C., James, T. D., et al. ( 2015 ). Reverse glacier motion during iceberg calving and the cause of glacial earthquakes. Science, 349 ( 6245 ), 305 – 308. https://doi.org/10.1126/science.aab0460
dc.identifier.citedreferenceNettles, M., & Ekström, G. ( 2010 ). Glacial earthquakes in Greenland and Antarctica. Annual Review of Earth and Planetary Sciences, 38, 467 – 491. https://doi.org/10.1146/annurev-earth-040809-152414
dc.identifier.citedreferenceNettles, M., Larsen, T. B., Elósegui, P., Hamilton, G. S., Stearns, L. A., Ahlstrøm, A. P., et al. ( 2008 ). Step‐wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. Geophysical Research Letters, 35 ( 24 ), L24503. https://doi.org/10.1029/2008GL036127
dc.identifier.citedreferenceOlsen, K. G., & Nettles, M. ( 2017 ). Patterns in glacial‐earthquake activity around Greenland, 2011–13. Journal of Glaciology, 63 ( 242 ), 1077 – 1089. https://doi.org/10.1017/jog.2017.78
dc.identifier.citedreferenceOlsen, K. G., & Nettles, M. ( 2019 ). Constraints on terminus dynamics at Greenland glaciers from small glacial earthquakes. Journal of Geophysical Research: Earth Surface, 124, 1899 – 1918. https://doi.org/10.1029/2019JF005054
dc.identifier.citedreferenceSergeant, A., Mangeney, A., Stutzmann, E., Montagner, J., Walter, F., Moretti, L., & Castelnau, O. ( 2016 ). Complex force history of a calving‐generated glacial earthquake derived from broadband seismic inversion. Geophysical Research Letters, 43 ( 3 ), 1055 – 1065. https://doi.org/10.1002/2015GL066785
dc.identifier.citedreferenceSergeant, A., Mangeney, A., Yastrebov, V. A., Walter, F., Montagner, J.‐P., Castelnau, O., et al. ( 2019 ). Monitoring Greenland ice sheet buoyancy‐driven calving discharge using glacial earthquakes. Annals of Glaciology, 60, 1 – 95. https://doi.org/10.1017/aog.2019.7
dc.identifier.citedreferenceSergeant, A., Yastrebov, V. A., Mangeney, A., Castelnau, O., Montagner, J.‐P., & Stutzmann, E. ( 2018 ). Numerical modeling of iceberg capsizing responsible for glacial earthquakes. Journal of Geophysical Research: Earth Surface, 123 ( 11 ), 3013 – 3033. https://doi.org/10.1029/2018JF004768
dc.identifier.citedreferenceTsai, V. C., & Ekström, G. ( 2007 ). Analysis of glacial earthquakes. Journal of Geophysical Research: Earth Surface, 112 ( F3 ), F03S22. https://doi.org/10.1029/2006JF000596
dc.identifier.citedreferenceTsai, V. C., Rice, J. R., & Fahnestock, M. ( 2008 ). Possible mechanisms for glacial earthquakes. Journal of Geophysical Research: Earth Surface, 113 ( F3 ), F03014. https://doi.org/10.1029/2007JF000944
dc.identifier.citedreferenceVeitch, S. A., & Nettles, M. ( 2012 ). Spatial and temporal variations in Greenland glacial‐earthquake activity, 1993–2010. Journal of Geophysical Research: Earth Surface, 117 ( F4 ), F04007. https://doi.org/10.1029/2012JF002412
dc.identifier.citedreferenceWalter, F., Amundson, J. M., O’Neel, S., Truffer, M., Fahnestock, M., & Fricker, H. A. ( 2012 ). Analysis of low‐frequency seismic signals generated during a multiple‐iceberg calving event at Jakobshavn Isbræ, Greenland. Journal of Geophysical Research: Earth Surface, 117 ( F1 ), F01036. https://doi.org/10.1029/2011JF002132
dc.identifier.citedreferenceAmundson, J. M., Burton, J. C., & Correa‐Legisos, S. ( 2012 ). Impact of hydrodynamics on seismic signals generated by iceberg collisions. Annals of Glaciology, 53 ( 60 ), 106 – 112. https://doi.org/10.3189/2012aog60a012
dc.identifier.citedreferenceAmundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., & Motyka, R. J. ( 2010 ). Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. Journal of Geophysical Research: Earth Surface, 115 ( F1 ). https://doi.org/10.1029/2009JF001405
dc.identifier.citedreferenceBeyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. ( 2010 ). Obspy: A Python toolbox for seismology. Seismological Research Letters, 81 ( 3 ), 530 – 533. https://doi.org/10.1785/gssrl.81.3.530
dc.identifier.citedreferenceBonnet, P., Yastrebov, V. A., Queutey, P., Leroyer, A., Mangeney, A., Castelnau, O., et al. ( 2020 ). Modelling capsizing icebergs in the open ocean. Geophysical Journal International, 223 ( 2 ), 1265 – 1287. https://doi.org/10.1093/gji/ggaa353
dc.identifier.citedreferenceBurton, J. C., Amundson, J. M., Abbot, D. S., Boghosian, A., Cathles, L. M., Correa‐Legisos, S., et al. ( 2012 ). Laboratory investigations of iceberg capsize dynamics, energy dissipation and tsunamigenesis. Journal of Geophysical Research: Earth Surface, 117 ( F1 ), F01007. https://doi.org/10.1029/2011JF002055
dc.identifier.citedreferenceCathles, L. M., Kaluzienski, L., & Burton, J. C. ( 2015 ). Laboratory investigations of seismicity caused by iceberg calving and capsize. In AGU Fall Meeting Abstracts ( 2015, p. C43B-0803).
dc.identifier.citedreferenceClinton, J. F., Nettles, M., Walter, F., Anderson, K., Dahl‐Jensen, T., Giardini, D., et al. ( 2014 ). Seismic Network in Greenland Monitors Earth and Ice System. Eos, Transactions American Geophysical Union, 95 ( 2 ), 13 – 14. http://doi.org/10.1002/2014eo020001
dc.identifier.citedreferenceDziewonski, A. M., & Anderson, D. L. ( 1981 ). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25 ( 4 ), 297 – 356. https://doi.org/10.1016/0031-9201(81)90046-7
dc.identifier.citedreferenceDziewonski, A. M., Chou, T.‐A., & Woodhouse, J. H. ( 1981 ). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86 ( B4 ), 2825 – 2852. https://doi.org/10.1029/jb086ib04p02825
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.