Show simple item record

Transmission of an ICME Sheath Into the Earth’s Magnetosheath and the Occurrence of Traveling Foreshocks

dc.contributor.authorAla-Lahti, Matti
dc.contributor.authorDimmock, Andrew P.
dc.contributor.authorPulkkinen, Tuija I.
dc.contributor.authorGood, Simon W.
dc.contributor.authorYordanova, Emilya
dc.contributor.authorTurc, Lucile
dc.contributor.authorKilpua, Emilia K. J.
dc.date.accessioned2022-01-06T15:50:16Z
dc.date.available2023-01-06 10:50:13en
dc.date.available2022-01-06T15:50:16Z
dc.date.issued2021-12
dc.identifier.citationAla-Lahti, Matti ; Dimmock, Andrew P.; Pulkkinen, Tuija I.; Good, Simon W.; Yordanova, Emilya; Turc, Lucile; Kilpua, Emilia K. J. (2021). "Transmission of an ICME Sheath Into the Earth’s Magnetosheath and the Occurrence of Traveling Foreshocks." Journal of Geophysical Research: Space Physics 126(12): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/171199
dc.description.abstractThe transmission of a sheath region driven by an interplanetary coronal mass ejection into the Earth’s magnetosheath is studied by investigating in situ magnetic field measurements upstream and downstream of the bow shock during an ICME sheath passage on 15 May 2005. We observe three distinct intervals in the immediate upstream region that included a southward magnetic field component and are traveling foreshocks. These traveling foreshocks were observed in the quasi- parallel bow shock that hosted backstreaming ions and magnetic fluctuations at ultralow frequencies. The intervals constituting traveling foreshocks in the upstream survive transmission to the Earth’s magnetosheath, where their magnetic field, and particularly the southward component, was significantly amplified. Our results further suggest that the magnetic field fluctuations embedded in an ICME sheath may survive the transmission if their frequency is below - ¼0.01 Hz. Although one of the identified intervals was coherent, extending across the ICME sheath and being long- lived, predicting ICME sheath magnetic fields that may transmit to the Earth’s magnetosheath from the upstream at L1 observations has ambiguity. This can result from the strong spatial variability of the ICME sheath fields in the longitudinal direction, or alternatively from the ICME sheath fields developing substantially within the short time it takes the plasma to propagate from L1 to the bow shock. This study demonstrates the complex interplay ICME sheaths have with the Earth’s magnetosphere when passing by the planet.Key PointsSeveral intervals in an interplanetary coronal mass ejection (ICME) sheath maintained their magnetic structure with transmission into the Earth’s magnetosheathThe intervals caused traveling foreshocks, ultralow- frequency fluctuations, and backstreaming ions upstream of the quasi- parallel bow shockCorrelation of observations from a solar wind monitor and a spacecraft in the magnetosheath depends on spacecraft alignment
dc.publisherWiley Periodicals, Inc.
dc.subject.otherICME
dc.subject.otherICME sheath
dc.subject.othermagnetosheath
dc.subject.othermultispacecraft analysis
dc.subject.othertraveling foreshock
dc.titleTransmission of an ICME Sheath Into the Earth’s Magnetosheath and the Occurrence of Traveling Foreshocks
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171199/1/jgra56910.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171199/2/jgra56910_am.pdf
dc.identifier.doi10.1029/2021JA029896
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferencePfau- Kempf, Y., Hietala, H., Milan, S. E., Juusola, L., Hoilijoki, S., Ganse, U., & Palmroth, M. ( 2016 ). Evidence for transient, local ion foreshocks caused by dayside magnetopause reconnection. Annales Geophysicae, 34 ( 11 ), 943 - 959. https://doi.org/10.5194/angeo-34-943-2016
dc.identifier.citedreferenceRojas- Castillo, D., Blanco- Cano, X., KajdiÄ , P., & Omidi, N. ( 2013 ). Foreshock compressional boundaries observed by Cluster. Journal of Geophysical Research: Space Physics, 118 ( 2 ), 698 - 715. https://doi.org/10.1029/2011JA017385
dc.identifier.citedreferenceRuffenach, A., Lavraud, B., Owens, M. J., Sauvaud, J. A., Savani, N. P., Rouillard, A. P., et al. ( 2012 ). Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. Journal of Geophysical Research: Space Physics, 117 ( A9 ), A09101. https://doi.org/10.1029/2012JA017624
dc.identifier.citedreferenceRussell, C. T., Luhmann, J. G., Odera, T. J., & Stuart, W. F. ( 1983 ). The rate of occurrence of dayside Pc 3,4 pulsations: The L- value dependence of the IMF cone angle effect. Geophysical Research Letters, 10 ( 8 ), 663 - 666. https://doi.org/10.1029/GL010i008p00663
dc.identifier.citedreferenceSalman, T. M., Lugaz, N., Farrugia, C. J., Winslow, R. M., Jian, L. K., & Galvin, A. B. ( 2020 ). Properties of the sheath regions of coronal mass ejections with or without shocks from STEREO in situ observations near 1 AU. The Astrophysical Journal, 904 ( 2 ), 177. https://doi.org/10.3847/1538-4357/abbdf5
dc.identifier.citedreferenceScolini, C., Verbeke, C., Poedts, S., Chané, E., Pomoell, J., & Zuccarello, F. P. ( 2018 ). Effect of the initial shape of coronal mass ejections on 3- D MHD simulations and geoeffectiveness predictions. Space Weather, 16 ( 6 ), 754 - 771. https://doi.org/10.1029/2018SW001806
dc.identifier.citedreferenceShue, J. H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., et al. ( 1998 ). Magnetopause location under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 103 ( A8 ), 17691 - 17700. https://doi.org/10.1029/98JA01103
dc.identifier.citedreferenceSmith, C. W., L’Heureux, J., Ness, N. F., Acuña, M. H., Burlaga, L. F., & Scheifele, J. ( 1998 ). The ACE Magnetic Fields Experiment. Space Science Reviews, 86, 613 - 632. https://doi.org/10.1023/A:1005092216668
dc.identifier.citedreferenceTakahashi, K., McPherron, R. L., & Terasawa, T. ( 1984 ). Dependence of the spectrum of Pc 3- 4 pulsations on the interplanetary magnetic field. Journal of Geophysical Research: Space Physics, 89 ( A5 ), 2770 - 2780. https://doi.org/10.1029/JA089iA05p02770
dc.identifier.citedreferenceTakahashi, K., Turc, L., Kilpua, E., Takahashi, N., Dimmock, A., Kajdic, P., & Battarbee, M. ( 2021 ). Propagation of ultralow frequency waves from the ion foreshock into the magnetosphere during the passage of a magnetic cloud. Journal of Geophysical Research: Space Physics, 126 ( 2 ), e28474. https://doi.org/10.1029/2020JA028474
dc.identifier.citedreferenceTsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S. I., & Smith, E. J. ( 1988 ). Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978- 1979). Journal of Geophysical Research: Space Physics, 93 ( A8 ), 8519 - 8531. https://doi.org/10.1029/JA093iA08p08519
dc.identifier.citedreferenceTsurutani, B. T., Hajra, R., Echer, E., & Gjerloev, J. W. ( 2015 ). Extremely intense (SML - ¤ - 2500 nT) substorms: Isolated events that are externally triggered? Annales Geophysicae, 33 ( 5 ), 519 - 524. https://doi.org/10.5194/angeo-33-519-2015
dc.identifier.citedreferenceTsurutani, B. T., Lakhina, G. S., & Hajra, R. ( 2020 ). The physics of space weather/solar- terrestrial physics (STP): What we know now and what the current and future challenges are. Nonlinear Processes in Geophysics, 27 ( 1 ), 75 - 119. https://doi.org/10.5194/npg-27-75-2020
dc.identifier.citedreferenceTsurutani, B. T., Lakhina, G. S., Verkhoglyadova, O. P., Gonzalez, W. D., Echer, E., & Guarnieri, F. L. ( 2011 ). A review of interplanetary discontinuities and their geomagnetic effects. Journal of Atmospheric and Solar- Terrestrial Physics, 73 ( 1 ), 5 - 19. https://doi.org/10.1016/j.jastp.2010.04.001
dc.identifier.citedreferenceTurc, L., Fontaine, D., Escoubet, C. P., Kilpua, E. K. J., & Dimmock, A. P. ( 2017 ). Statistical study of the alteration of the magnetic structure of magnetic clouds in the Earth’s magnetosheath. Journal of Geophysical Research: Space Physics, 122 ( 3 ), 2956 - 2972. https://doi.org/10.1002/2016JA023654
dc.identifier.citedreferenceTurc, L., Fontaine, D., Savoini, P., & Kilpua, E. K. J. ( 2014 ). Magnetic clouds- structure in the magnetosheath as observed by Cluster and Geotail: Four case studies. Annales Geophysicae, 32 ( 10 ), 1247 - 1261. https://doi.org/10.5194/angeo-32-1247-2014
dc.identifier.citedreferenceTurc, L., Ganse, U., Pfau- Kempf, Y., Hoilijoki, S., Battarbee, M., Juusola, L., & Palmroth, M. ( 2018 ). Foreshock properties at typical and enhanced interplanetary magnetic field strengths: Results from Hybrid- Vlasov simulations. Journal of Geophysical Research: Space Physics, 123 ( 7 ), 5476 - 5493. https://doi.org/10.1029/2018JA025466
dc.identifier.citedreferenceTurc, L., Roberts, O. W., Archer, M. O., Palmroth, M., Battarbee, M., Brito, T., & Dandouras, I. ( 2019 ). First observations of the disruption of the Earth’s foreshock wave field during magnetic clouds. Geophysical Research Letters, 46 ( 2212 ), 12644 - 12653. https://doi.org/10.1029/2019GL084437
dc.identifier.citedreferenceTurner, D. L., Kilpua, E. K. J., Hietala, H., Claudepierre, S. G., O- Brien, T. P., Fennell, J. F., & Reeves, G. D. ( 2019 ). The response of earth’s electron radiation belts to geomagnetic storms: Statistics from the Van Allen Probes Era including effects from different storm drivers. Journal of Geophysical Research, 124 ( 2 ), 1013 - 1034. https://doi.org/10.1029/2018JA026066
dc.identifier.citedreferenceVillante, U., De Paulis, C., & Francia, P. ( 2011 ). The transmission of upstream waves to the magnetosphere: An analysis at widely separated ground stations. Journal of Geophysical Research: Space Physics, 116 ( A6 ), A06219. https://doi.org/10.1029/2010JA016263
dc.identifier.citedreferenceWilson, L. B. ( 2016 ). Low frequency waves at and upstream of collisionless shocks. Washington DC American Geophysical Union Geophysical Monograph Series (pp. 269 - 291 ). https://doi.org/10.1002/9781119055006.ch16
dc.identifier.citedreferenceWinslow, R. M., Lugaz, N., Scolini, C., & Galvin, A. B. ( 2021 ). First simultaneous in situ measurements of a coronal mass ejection by Parker solar probe and STEREO- A. The Astrophysical Journal, 916 ( 2 ), 94. https://doi.org/10.3847/1538-4357/ac0821
dc.identifier.citedreferenceYermolaev, Y. I., Lodkina, I. G., Nikolaeva, N. S., Yermolaev, M. Y., Riazantseva, M. O., & Rakhmanova, L. S. ( 2018 ). Statistic study of the geoeffectiveness of compression regions CIRs and sheaths. Journal of Atmospheric and Solar- Terrestrial Physics, 180, 52 - 59. https://doi.org/10.1016/j.jastp.2018.01.027
dc.identifier.citedreferenceYermolaev, Y. I., Nikolaeva, N. S., Lodkina, I. G., & Yermolaev, M. Y. ( 2012 ). Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. Journal of Geophysical Research: Space Physics, 117 ( A9 ), A00L07. https://doi.org/10.1029/2011JA017139
dc.identifier.citedreferenceYurchyshyn, V., Liu, C., Abramenko, V., & Krall, J. ( 2006 ). The May 13, 2005 eruption: Observations, data analysis and interpretation. Solar Physics, 239 ( 1- 2 ), 317 - 335. https://doi.org/10.1007/s11207-006-0177-3
dc.identifier.citedreferenceZank, G. P., Nakanotani, M., Zhao, L. L., Du, S., Adhikari, L., Che, H., & le Roux, J. A. ( 2021 ). Flux ropes, turbulence, and collisionless perpendicular shock waves: High plasma beta case. The Astrophysical Journal, 913 ( 2 ), 127. https://doi.org/10.3847/1538-4357/abf7c8
dc.identifier.citedreferenceZhou, X., & Tsurutani, B. T. ( 2001 ). Interplanetary shock triggering of nightside geomagnetic activity: Substorms, pseudobreakups, and quiescent events. Journal of Geophysical Research: Space Physics, 106 ( A9 ), 18957 - 18968. https://doi.org/10.1029/2000JA003028
dc.identifier.citedreferenceAla- Lahti, M., Ruohotie, J., Good, S., Kilpua, E. K. J., & Lugaz, N. ( 2020 ). Spatial coherence of interplanetary coronal mass ejection sheaths at 1 AU. Journal of Geophysical Research: Space Physics, 125 ( 9 ), e28002. https://doi.org/10.1029/2020JA028002
dc.identifier.citedreferenceAlexander, R. A. ( 1990 ). A note on averaging correlations. Bulletin of the Psychonomic Society, 28 ( 4 ), 335 - 336. https://doi.org/10.3758/BF03334037
dc.identifier.citedreferenceArcher, M., Horbury, T. S., Lucek, E. A., Mazelle, C., Balogh, A., & Dandouras, I. ( 2005 ). Size and shape of ULF waves in the terrestrial foreshock. Journal of Geophysical Research: Space Physics, 110 ( A5 ), A05208. https://doi.org/10.1029/2004JA010791
dc.identifier.citedreferenceBalogh, A., Dunlop, M. W., Cowley, S. W. H., Southwood, D. J., Thomlinson, J. G., Glassmeier, K. H., et al. ( 1997 ). The cluster magnetic field investigation. Space Science Reviews, 79, 65 - 91. https://doi.org/10.1023/a:1004970907748
dc.identifier.citedreferenceBisi, M. M., Breen, A. R., Jackson, B. V., Fallows, R. A., Walsh, A. P., MikiÄ , Z., et al. ( 2010 ). From the Sun to the Earth: The 13 May 2005 coronal mass ejection. Solar Physics, 265 ( 1- 2 ), 49 - 127. https://doi.org/10.1007/s11207-010-9602-8
dc.identifier.citedreferenceBlanco- Cano, X., KajdiÄ , P., Aguilar- Rodríguez, E., Russell, C. T., Jian, L. K., & Luhmann, J. G. ( 2016 ). Interplanetary shocks and foreshocks observed by STEREO during 2007- 2010. Journal of Geophysical Research: Space Physics, 121 ( 2 ), 992 - 1008. https://doi.org/10.1002/2015JA021645
dc.identifier.citedreferenceBlanco- Cano, X., Omidi, N., & Russell, C. T. ( 2006 ). Macrostructure of collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath. Journal of Geophysical Research, 111 ( A10 ), A10205. https://doi.org/10.1029/2005JA011421
dc.identifier.citedreferenceBlum, L. W., Koval, A., Richardson, I. G., Wilson, L. B., Malaspina, D., Greeley, A., & Jaynes, A. N. ( 2021 ). Prompt response of the dayside magnetosphere to discrete structures within the sheath region of a coronal mass ejection. Geophysical Research Letters, 48 ( 11 ), e92700. https://doi.org/10.1029/2021GL092700
dc.identifier.citedreferenceBoudouridis, A., Zesta, E., Lyons, L. R., Anderson, P. C., & Lummerzheim, D. ( 2005 ). Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation. Journal of Geophysical Research: Space Physics, 110 ( A5 ), A05214. https://doi.org/10.1029/2004JA010704
dc.identifier.citedreferenceBurgess, D. ( 1997 ). What do we really know about upstream waves? Advances in Space Research, 20 ( 4- 5 ), 673 - 682. https://doi.org/10.1016/S0273-1177(97)00455-9
dc.identifier.citedreferenceBurton, R. K., McPherron, R. L., & Russell, C. T. ( 1975 ). An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research, 80 ( 31 ), 4204. https://doi.org/10.1029/JA080i031p04204
dc.identifier.citedreferenceChen, L.- J., Ng, J., Omelchenko, Y., & Wang, S. ( 2021 ). Magnetopause Reconnection and Indents Induced by Foreshock Turbulence. Geophysical Research Letters, 48 ( 11 ), e93029. https://doi.org/10.1029/2021GL093029
dc.identifier.citedreferenceClausen, L. B. N., Yeoman, T. K., Fear, R. C., Behlke, R., Lucek, E. A., & Engebretson, M. J. ( 2009 ). First simultaneous measurements of waves generated at the bow shock in the solar wind, the magnetosphere and on the ground. Annales Geophysicae, 27 ( 1 ), 357 - 371. https://doi.org/10.5194/angeo-27-357-2009
dc.identifier.citedreferenceCrooker, N. U. ( 2000 ). Solar and heliospheric geoeffective disturbances. Journal of Atmospheric and Solar- Terrestrial Physics, 62 ( 12 ), 1071 - 1085. https://doi.org/10.1016/S1364-6826(00)00098-5
dc.identifier.citedreferenceDasso, S., Mandrini, C. H., Démoulin, P., & Luoni, M. L. ( 2006 ). A new model- independent method to compute magnetic helicity in magnetic clouds. Astronomy and Astrophysics, 455 ( 1 ), 349 - 359. https://doi.org/10.1051/0004-6361:20064806
dc.identifier.citedreferenceDasso, S., Mandrini, C. H., Schmieder, B., Cremades, H., Cid, C., Cerrato, Y., et al. ( 2009 ). Linking two consecutive nonmerging magnetic clouds with their solar sources. Journal of Geophysical Research: Space Physics, 114 ( A2 ), A02109. https://doi.org/10.1029/2008JA013102
dc.identifier.citedreferenceDimmock, A. P., Rosenqvist, L., Hall, J. O., Viljanen, A., Yordanova, E., Honkonen, I., & Sjöberg, E. C. ( 2019 ). The GIC and geomagnetic response over Fennoscandia to the 7- 8 September 2017 geomagnetic storm. Space Weather, 17 ( 7 ), 989 - 1010. https://doi.org/10.1029/2018SW002132
dc.identifier.citedreferenceEastwood, J. P., Balogh, A., Lucek, E. A., Mazelle, C., & Dandouras, I. ( 2003 ). On the existence of Alfvén waves in the terrestrial foreshock. Annales Geophysicae, 21 ( 7 ), 1457 - 1465. https://doi.org/10.5194/angeo-21-1457-2003
dc.identifier.citedreferenceEastwood, J. P., Balogh, A., Lucek, E. A., Mazelle, C., & Dandouras, I. ( 2005 ). Quasi- monochromatic ULF foreshock waves as observed by the four- spacecraft Cluster mission: 1. Statistical properties. Journal of Geophysical Research, 110 ( A11 ), A11219. https://doi.org/10.1029/2004JA010617
dc.identifier.citedreferenceEastwood, J. P., Lucek, E. A., Mazelle, C., Meziane, K., Narita, Y., Pickett, J., & Treumann, R. A. ( 2005 ). The foreshock. Space Science Reviews, 118 ( 1- 4 ), 41 - 94. https://doi.org/10.1007/s11214-005-3824-3
dc.identifier.citedreferenceFox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A., Howard, R. A., et al. ( 2016 ). The Solar Probe Plus mission: Humanity’s first visit to our star. Space Science Reviews, 204 ( 1- 4 ), 7 - 48. https://doi.org/10.1007/s11214-015-0211-6
dc.identifier.citedreferenceFrancia, P., Regi, M., De Lauretis, M., Villante, U., & Pilipenko, V. A. ( 2012 ). A case study of upstream wave transmission to the ground at polar and low latitudes. Journal of Geophysical Research: Space Physics, 117 ( A1 ), A01210. https://doi.org/10.1029/2011JA016751
dc.identifier.citedreferenceFuselier, S. A. ( 1995 ). Ion distributions in the Earth’s foreshock upstream from the bow shock. Advances in Space Research, 15 ( 8- 9 ), 43 - 52. https://doi.org/10.1016/0273-1177(94)00083-D
dc.identifier.citedreferenceGary, S. P. ( 1985 ). Electromagnetic ion beam instabilities: Hot beams at interplanetary shocks. The Astrophysical Journal, 288, 342 - 352. https://doi.org/10.1086/162797
dc.identifier.citedreferenceGary, S. P. ( 1991 ). Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review. Space Science Reviews, 56 ( 3- 4 ), 373 - 415. https://doi.org/10.1007/BF00196632
dc.identifier.citedreferenceGonzalez, W. D., Echer, E., Tsurutani, B. T., Clúa de Gonzalez, A. L., & Dal Lago, A. ( 2011 ). Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Science Reviews, 158 ( 1 ), 69 - 89. https://doi.org/10.1007/s11214-010-9715-2
dc.identifier.citedreferenceGonzalez, W. D., Tsurutani, B. T., & Clúa de Gonzalez, A. L. ( 1999 ). Interplanetary origin of geomagnetic storms. Space Science Reviews, 88, 529 - 562. https://doi.org/10.1023/A:1005160129098
dc.identifier.citedreferenceGood, S. W., Ala- Lahti, M., Palmerio, E., Kilpua, E. K. J., & Osmane, A. ( 2020 ). Radial evolution of magnetic field fluctuations in an interplanetary coronal mass ejection sheath. The Astrophysical Journal, 893 ( 2 ), 110. https://doi.org/10.3847/1538-4357/ab7fa2
dc.identifier.citedreferenceGood, S. W., Forsyth, R. J., Eastwood, J. P., & Möstl, C. ( 2018 ). Correlation of ICME magnetic fields at radially aligned spacecraft. Solar Physics, 293 ( 3 ), 52. https://doi.org/10.1007/s11207-018-1264-y
dc.identifier.citedreferenceGood, S. W., Kilpua, E. K. J., LaMoury, A. T., Forsyth, R. J., Eastwood, J. P., & Möstl, C. ( 2019 ). Self- similarity of ICME flux ropes: Observations by radially aligned spacecraft in the inner heliosphere. Journal of Geophysical Research: Space Physics, 124 ( 7 ), 4960 - 4982. https://doi.org/10.1029/2019JA026475
dc.identifier.citedreferenceGosling, J. T., & McComas, D. J. ( 1987 ). Field line draping about fast coronal mass ejecta: A source of strong out- of- the- ecliptic interplanetary magnetic fields. Geophysical Research Letters, 14 ( 4 ), 355 - 358. https://doi.org/10.1029/GL014i004p00355
dc.identifier.citedreferenceGreenstadt, E. W., Green, I. M., Inouye, G. T., Hundhausen, A. J., Bame, S. J., & Strong, I. B. ( 1968 ). Correlated magnetic field and plasma observations of the Earth’s bow shock. Journal of Geophysical Research, 73 ( 1 ), 51. https://doi.org/10.1029/JA073i001p00051
dc.identifier.citedreferenceHietala, H., Kilpua, E. K. J., Turner, D. L., & Angelopoulos, V. ( 2014 ). Depleting effects of ICME- driven sheath regions on the outer electron radiation belt. Geophysical Research Letters, 41 ( 7 ), 2258 - 2265. https://doi.org/10.1002/2014GL059551
dc.identifier.citedreferenceHobara, Y., Walker, S. N., Balikhin, M., Pokhotelov, O. A., Dunlop, M., Nilsson, H., & RèMe, H. ( 2007 ). Characteristics of terrestrial foreshock ULF waves: Cluster observations. Journal of Geophysical Research: Space Physics, 112 ( A7 ), A07202. https://doi.org/10.1029/2006JA012142
dc.identifier.citedreferenceHoppe, M. M., & Russell, C. T. ( 1982 ). Particle acceleration at planetary bow shock waves. Nature, 295 ( 5844 ), 41 - 42. https://doi.org/10.1038/295041a0
dc.identifier.citedreferenceHsieh, W. C., & Shue, J. H. ( 2013 ). Dependence of the oblique propagation of ULF foreshock waves on solar wind parameters. Journal of Geophysical Research: Space Physics, 118 ( 7 ), 4151 - 4160. https://doi.org/10.1002/jgra.50225
dc.identifier.citedreferenceHuttunen, K. E. J., Kilpua, S. P., Pulkkinen, A., Viljanen, A., & Tanskanen, E. ( 2008 ). Solar wind drivers of large geomagnetically induced currents during the solar cycle 23. Space Weather, 6 ( 10 ), S10002. https://doi.org/10.1029/2007SW000374
dc.identifier.citedreferenceHuttunen, K. E. J., & Koskinen, H. E. J. ( 2004 ). Importance of post- shock streams and sheath region as drivers of intense magnetospheric storms and high- latitude activity. Annales Geophysicae, 22 ( 5 ), 1729 - 1738. https://doi.org/10.5194/angeo-22-1729-2004
dc.identifier.citedreferenceHuttunen, K. E. J., Koskinen, H. E. J., & Schwenn, R. ( 2002 ). Variability of magnetospheric storms driven by different solar wind perturbations. Journal of Geophysical Research: Space Physics, 107 ( A7 ), 1121. https://doi.org/10.1029/2001JA900171
dc.identifier.citedreferenceJanvier, M., Winslow, R. M., Good, S., Bonhomme, E., Démoulin, P., Dasso, S., & Boakes, P. D. ( 2019 ). Generic magnetic field intensity profiles of interplanetary coronal mass ejections at Mercury, Venus, and Earth from superposed epoch analyses. Journal of Geophysical Research (Space Physics), 124 ( 2 ), 812 - 836. https://doi.org/10.1029/2018JA025949
dc.identifier.citedreferenceJones, G. H., Rees, A., Balogh, A., & Forsyth, R. J. ( 2002 ). The draping of heliospheric magnetic fields upstream of coronal mass ejecta. Geophysical Research Letters, 29 ( 11 ), 1520. https://doi.org/10.1029/2001GL014110
dc.identifier.citedreferenceKajdiÄ , P., Blanco- Cano, X., Omidi, N., Rojas- Castillo, D., Sibeck, D. G., & Billingham, L. ( 2017 ). Traveling Foreshocks and Transient Foreshock Phenomena. Journal of Geophysical Research: Space Physics, 122 ( 9 ), 9148 - 9168. https://doi.org/10.1002/2017JA023901
dc.identifier.citedreferenceKajdiÄ , P., Preisser, L., Blanco- Cano, X., Burgess, D., & Trotta, D. ( 2019 ). First observations of irregular surface of interplanetary shocks at ion scales by Cluster. The Astrophysical Journal Letters, 874 ( 2 ), L13. https://doi.org/10.3847/2041-8213/ab0e84
dc.identifier.citedreferenceKalliokoski, M. M. H., Kilpua, E. K. J., Osmane, A., Turner, D. L., Jaynes, A. N., Turc, L., & Palmroth, M. ( 2020 ). Outer radiation belt and inner magnetospheric response to sheath regions of coronal mass ejections: A statistical analysis. Annales Geophysicae, 38 ( 3 ), 683 - 701. https://doi.org/10.5194/angeo-38-683-2020
dc.identifier.citedreferenceKaymaz, Z., & Siscoe, G. ( 2006 ). Field- line draping around ICMES. Solar Physics, 239 ( 1- 2 ), 437 - 448. https://doi.org/10.1007/s11207-006-0308-x
dc.identifier.citedreferenceKempf, Y., Pokhotelov, D., Gutynska, O., Wilson III, L. B., Walsh, B. M., von Alfthan, S., et al. ( 2015 ). Ion distributions in the Earth’s foreshock: Hybrid- Vlasov simulation and THEMIS observations. Journal of Geophysical Research: Space Physics, 120 ( 5 ), 3684 - 3701. https://doi.org/10.1002/2014ja020519
dc.identifier.citedreferenceKilpua, E. K. J., Balogh, A., von Steiger, R., & Liu, Y. D. ( 2017 ). Geoeffective properties of solar transients and stream interaction regions. Space Science Reviews, 212 ( 3- 4 ), 1271 - 1314. https://doi.org/10.1007/s11214-017-0411-3
dc.identifier.citedreferenceKilpua, E. K. J., Fontaine, D., Moissard, C., Ala- Lahti, M., Palmerio, E., Yordanova, E., & Turc, L. ( 2019 ). Solar wind properties and geospace impact of coronal mass ejection- driven sheath regions: Variation and driver dependence. Space Weather, 17 ( 8 ), 1257 - 1280. https://doi.org/10.1029/2019SW002217
dc.identifier.citedreferenceKilpua, E. K. J., Hietala, H., Koskinen, H. E. J., Fontaine, D., & Turc, L. ( 2013 ). Magnetic field and dynamic pressure ULF fluctuations in coronal- mass- ejection- driven sheath regions. Annales Geophysicae, 31 ( 9 ), 1559 - 1567. https://doi.org/10.5194/angeo-31-1559-2013
dc.identifier.citedreferenceKilpua, E. K. J., Koskinen, H. E. J., & Pulkkinen, T. I. ( 2017 ). Coronal mass ejections and their sheath regions in interplanetary space. Living Reviews in Solar Physics, 14 ( 1 ), 5. https://doi.org/10.1007/s41116-017-0009-6
dc.identifier.citedreferenceKis, A., Scholer, M., Klecker, B., Möbius, E., Lucek, E. A., Rème, H., et al. ( 2004 ). Multi- spacecraft observations of diffuse ions upstream of Earth’s bow shock. Geophysical Research Letters, 31 ( 20 ), L20801. https://doi.org/10.1029/2004GL020759
dc.identifier.citedreferenceKnipp, D., Kilcommons, L., Hunt, L., Mlynczak, M., Pilipenko, V., Bowman, B., & Drake, K. ( 2013 ). Thermospheric damping response to sheath- enhanced geospace storms. Geophysical Research Letters, 40 ( 7 ), 1263 - 1267. https://doi.org/10.1002/grl.50197
dc.identifier.citedreferenceKokubun, S., Yamamoto, T., Acuña, M. H., Hayashi, K., Shiokawa, K., & Kawano, H. ( 1994 ). The GEOTAIL magnetic field experiment. Journal of Geomagnetism and Geoelectricity, 46 ( 1 ), 7 - 21. https://doi.org/10.5636/jgg.46.7
dc.identifier.citedreferenceLavraud, B., Ruffenach, A., Rouillard, A. P., Kajdic, P., Manchester, W. B., & Lugaz, N. ( 2014 ). Geo- effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection. Journal of Geophysical Research: Space Physics, 119 ( 1 ), 26 - 35. https://doi.org/10.1002/2013JA019154
dc.identifier.citedreferenceLepping, R. P., Acũna, M. H., Burlaga, L. F., Farrell, W. M., Slavin, J. A., Schatten, K. H., & Worley, E. M. ( 1995 ). The wind magnetic field investigation. Space Science Reviews, 71, 207 - 229. https://doi.org/10.1007/BF00751330
dc.identifier.citedreferenceLin, Y., & Wang, X. Y. ( 2005 ). Three- dimensional global hybrid simulation of dayside dynamics associated with the quasi- parallel bow shock. Journal of Geophysical Research, 110 ( A12 ), A12216. https://doi.org/10.1029/2005JA011243
dc.identifier.citedreferenceLindsay, G. M., Russell, C. T., & Luhmann, J. G. ( 1995 ). Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness. Journal of Geophysical Research: Space Physics, 100 ( A9 ), 16999 - 17014. https://doi.org/10.1029/95JA00525
dc.identifier.citedreferenceLugaz, N., Farrugia, C. J., Winslow, R. M., Al- Haddad, N., Galvin, A. B., Nieves- Chinchilla, T., et al. ( 2018 ). On the spatial coherence of magnetic ejecta: Measurements of coronal mass ejections by multiple spacecraft longitudinally separated by 0.01 AU. The Astrophysical Journal Letters, 864 ( 1 ), L7. https://doi.org/10.3847/2041-8213/aad9f4
dc.identifier.citedreferenceLugaz, N., Farrugia, C. J., Winslow, R. M., Al- Haddad, N., Kilpua, E. K. J., & Riley, P. ( 2016 ). Factors affecting the geoeffectiveness of shocks and sheaths at 1 AU. Journal of Geophysical Research: Space Physics, 121 ( 1110 ), 10861 - 10879. https://doi.org/10.1002/2016JA023100
dc.identifier.citedreferenceLugaz, N., Winslow, R. M., & Farrugia, C. J. ( 2020 ). Evolution of a long- duration coronal mass ejection and its sheath region between Mercury and Earth on 9- 14 July 2013. Journal of Geophysical Research: Space Physics, 125 ( 1 ), e27213. https://doi.org/10.1029/2019JA027213
dc.identifier.citedreferenceLuhmann, J. G., Gopalswamy, N., Jian, L. K., & Lugaz, N. ( 2020 ). ICME evolution in the inner heliosphere. Solar Physics, 295 ( 4 ), 61. https://doi.org/10.1007/s11207-020-01624-0
dc.identifier.citedreferenceManchester, W. B., Kilpua, E. K. J., Liu, Y. D., Lugaz, N., Riley, P., Török, T., & Vršnak, B. ( 2017 ). The physical processes of CME/ICME evolution. Space Science Reviews, 212 ( 3- 4 ), 1159 - 1219. https://doi.org/10.1007/s11214-017-0394-0
dc.identifier.citedreferenceManchester, W. B., Kozyra, J. U., Lepri, S. T., & Lavraud, B. ( 2014 ). Simulation of magnetic cloud erosion during propagation. Journal of Geophysical Research: Space Physics, 119 ( 7 ), 5449 - 5464. https://doi.org/10.1002/2014JA019882
dc.identifier.citedreferenceMazelle, C., Meziane, K., Le Quéau, D., Wilber, M., Eastwood, J. P., Rème, H., et al. ( 2003 ). Production of gyrating ions from nonlinear wave- particle interaction upstream from the Earth’s bow shock: A case study from Cluster- CIS. Planetary and Space Science, 51 ( 12 ), 785 - 795. https://doi.org/10.1016/j.pss.2003.05.002
dc.identifier.citedreferenceMcComas, D. J., Bame, S. J., Barker, P., Feldman, W. C., Phillips, J. L., Riley, P., & Griffee, J. W. ( 1998 ). Solar wind electron proton alpha monitor (SWEPAM) for the Advanced Composition Explorer. Space Science Reviews, 86, 563 - 612. https://doi.org/10.1023/A:1005040232597
dc.identifier.citedreferenceMcComas, D. J., Gosling, J. T., Bame, S. J., Smith, E. J., & Cane, H. V. ( 1989 ). A test of magnetic field draping induced B z perturbations ahead of fast coronal mass ejecta. Journal of Geophysical Research: Space Physics, 94 ( A2 ), 1465 - 1471. https://doi.org/10.1029/JA094iA02p01465
dc.identifier.citedreferenceMeng, X., Tsurutani, B. T., & Mannucci, A. J. ( 2019 ). The solar and interplanetary causes of superstorms (minimum Dst - ¤ - 250 nT) during the space age. Journal of Geophysical Research: Space Physics, 124 ( 6 ), 3926 - 3948. https://doi.org/10.1029/2018JA026425
dc.identifier.citedreferenceMerka, J., Szabo, A., Slavin, J. A., & Peredo, M. ( 2005 ). Three- dimensional position and shape of the bow shock and their variation with upstream Mach numbers and interplanetary magnetic field orientation. Journal of Geophysical Research: Space Physics, 110 ( A4 ), A04202. https://doi.org/10.1029/2004JA010944
dc.identifier.citedreferenceMoissard, C., Fontaine, D., & Savoini, P. ( 2019 ). A study of fluctuations in magnetic cloud- driven sheaths. Journal of Geophysical Research: Space Physics, 124 ( 11 ), 8208 - 8226. https://doi.org/10.1029/2019JA026952
dc.identifier.citedreferenceMukai, T., Machida, S., Saito, Y., Hirahara, M., Terasawa, T., Kaya, N., & Nishida, A. ( 1994 ). The low energy particle (LEP) experiment onboard the GEOTAIL satellite. Journal of Geomagnetism and Geoelectricity, 46 ( 8 ), 669 - 692. https://doi.org/10.5636/jgg.46.669
dc.identifier.citedreferenceMüller, D., Marsden, R. G., St. Cyr, O. C., Gilbert, H. R., & The Solar Orbiter Team. ( 2013 ). Solar Orbiter: Exploring the sun- heliosphere connection. Solar Physics, 285 ( 1- 2 ), 25 - 70. https://doi.org/10.1007/s11207-012-0085-7
dc.identifier.citedreferenceNakagawa, T., Nishida, A., & Saito, T. ( 1989 ). Planar magnetic structures in the solar wind. Journal of Geophysical Research: Space Physics, 94 ( A9 ), 11761 - 11775. https://doi.org/10.1029/JA094iA09p11761
dc.identifier.citedreferenceNykyri, K., Bengtson, M., Angelopoulos, V., Nishimura, Y., & Wing, S. ( 2019 ). Can enhanced flux loading by high- speed jets lead to a substorm? Multipoint detection of the christmas day substorm onset at 08:17 UT, 2015. Journal of Geophysical Research: Space Physics, 124 ( 6 ), 4314 - 4340. https://doi.org/10.1029/2018JA026357
dc.identifier.citedreferenceOgilvie, K. W., Chornay, D. J., Fritzenreiter, R. J., Hunsaker, F., Keller, J., Lobell, J., & Gergin, E. ( 1995 ). SWE, a comprehensive plasma instrument for the wind spacecraft. Space Science Reviews, 71, 55 - 77. https://doi.org/10.1007/BF00751326
dc.identifier.citedreferenceOliveira, D. M., & Samsonov, A. A. ( 2018 ). Geoeffectiveness of interplanetary shocks controlled by impact angles: A review. Advances in Space Research, 61 ( 1 ), 1 - 44. https://doi.org/10.1016/j.asr.2017.10.006
dc.identifier.citedreferenceOlkin, I., & Pratt, J. W. ( 1958 ). Unbiased estimation of certain correlation coefficients. The Annals of Mathematical Statistics, 29 ( 1 ), 201 - 211. https://doi.org/10.1214/aoms/1177706717
dc.identifier.citedreferenceOmidi, N., Sibeck, D. G., & Blanco- Cano, X. ( 2009 ). Foreshock compressional boundary. Journal of Geophysical Research: Space Physics, 114 ( A8 ), A08205. https://doi.org/10.1029/2008JA013950
dc.identifier.citedreferencePalmerio, E., Kilpua, E. K. J., & Savani, N. P. ( 2016 ). Planar magnetic structures in coronal mass ejection- driven sheath regions. Annales Geophysicae, 34 ( 2 ), 313 - 322. https://doi.org/10.5194/angeo-34-313-2016
dc.identifier.citedreferencePalmroth, M., Archer, M., Vainio, R., Hietala, H., Pfau- Kempf, Y., Hoilijoki, S., et al. ( 2015 ). ULF foreshock under radial IMF: THEMIS observations and global kinetic simulation Vlasiator results compared. Journal of Geophysical Research: Space Physics, 120 ( 10 ), 8782 - 8798. https://doi.org/10.1002/2015JA021526
dc.identifier.citedreferencePaschmann, G., & Daly, P. W. ( 1998 ). Analysis methods for multi- spacecraft data. ISSI scientific reports series SR- 001, ESA/ISSI, vol. 1, ISBN 1608- 280X, 1998.
dc.identifier.citedreferencePaschmann, G., Sckopke, N., Bame, S. J., Asbridge, J. R., Gosling, J. T., Russell, C. T., & Greenstadt, E. W. ( 1979 ). Association of low- frequency waves with suprathermal ions in the upstream solar wind. Geophysical Research Letters, 6 ( 3 ), 209 - 212. https://doi.org/10.1029/GL006i003p00209
dc.identifier.citedreferencePitÅ a, A., Å afránková, J., NÄ meÄ ek, Z., Ä urovcová, T., & Kis, A. ( 2021 ). Turbulence upstream and downstream of interplanetary shocks. Frontiers in Physics, 8, 654. https://doi.org/10.3389/fphy.2020.626768
dc.identifier.citedreferencePitÅ a, A., Å afránková, J., NÄ meÄ ek, Z., Goncharov, O., NÄ mec, F., PÅ ech, L., & Zastenker, G. N. ( 2016 ). Density fluctuations upstream and downstream of interplanetary shocks. The Astrophysical Journal, 819 ( 1 ), 41. https://doi.org/10.3847/0004-637X/819/1/41
dc.identifier.citedreferencePulkkinen, T. I., Partamies, N., Huttunen, K. E. J., Reeves, G. D., & Koskinen, H. E. J. ( 2007 ). Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions. Geophysical Research Letters, 34 ( 2 ), L02105. https://doi.org/10.1029/2006GL027775
dc.identifier.citedreferenceRakhmanova, L., Riazantseva, M., Zastenker, G., & Šafránková, J. ( 2015 ). Modification of small- and middle- scale solar wind structures by the bow shock and magnetosheath: Correlation analysis. Planetary and Space Science, 115, 12 - 18. https://doi.org/10.1016/j.pss.2015.03.003
dc.identifier.citedreferenceRéme, H., Bosqued, J. M., Sauvaud, J. A., Cros, A., Dandouras, J., Aoustin, C., et al. ( 1997 ). The cluster ion spectrometry (CIS) experiment. Space Science Reviews, 79, 303 - 350. https://doi.org/10.1023/A:1004929816409
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.