Show simple item record

Plant removal across an elevational gradient marginally reduces rates, substantially reduces variation in mineralization

dc.contributor.authorRewcastle, Kenna E.
dc.contributor.authorHenning, Jeremiah A.
dc.contributor.authorRead, Quentin D.
dc.contributor.authorIrwin, Rebecca E.
dc.contributor.authorSanders, Nathan J.
dc.contributor.authorClassen, Aimée T.
dc.date.accessioned2022-01-06T15:50:20Z
dc.date.available2023-02-06 10:50:19en
dc.date.available2022-01-06T15:50:20Z
dc.date.issued2022-01
dc.identifier.citationRewcastle, Kenna E.; Henning, Jeremiah A.; Read, Quentin D.; Irwin, Rebecca E.; Sanders, Nathan J.; Classen, Aimée T. (2022). "Plant removal across an elevational gradient marginally reduces rates, substantially reduces variation in mineralization." Ecology (1): n/a-n/a.
dc.identifier.issn0012-9658
dc.identifier.issn1939-9170
dc.identifier.urihttps://hdl.handle.net/2027.42/171201
dc.description.abstractThe loss of aboveground plant diversity alters belowground ecosystem function; yet, the mechanisms underpinning this relationship and the degree to which plant community structure and climate mediate the effects of plant species loss remain unclear. Here, we explored how plant species loss through experimental removal shaped belowground function in ecosystems characterized by different climatic regimes and edaphic properties. We measured plant community composition as well as potential carbon (C) and nitrogen (N) mineralization and microbial extracellular enzyme activity in soils collected from four unique plant removal experiments located along an elevational gradient in Colorado, USA. We found that, regardless of the identity of the removed species or the climate at each site, plant removal decreased the absolute variation in potential N mineralization rates and marginally reduced the magnitude of N mineralization rates. While plant species removal also marginally reduced C mineralization rates, C mineralization, unlike N mineralization, displayed sensitivity to the climatic and edaphic differences among sites, where C mineralization was greatest at the high elevation site that receives the most precipitation annually and contains the largest soil total C pool. Plant removal had little impact on soil enzyme activity. Removal effects were not contingent on the amount of biomass removed annually, and shifts in mineralization rates occurred despite only marginal shifts in plant community structure following plant species removal. Our results present a surprisingly simple and consistent pattern of belowground response to the loss of dominant plant species across an elevational gradient with different climatic and edaphic properties, suggesting a common response of belowground ecosystem function to plant species loss regardless of which plant species are lost or the broader climatic context.
dc.publisherSage
dc.publisherWiley Periodicals, Inc.
dc.subject.othernitrogen mineralization
dc.subject.otherplant–soil linkages
dc.subject.otherplant removal
dc.subject.otherbiodiversity loss
dc.subject.othercarbon mineralization
dc.subject.otherelevational gradient
dc.titlePlant removal across an elevational gradient marginally reduces rates, substantially reduces variation in mineralization
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171201/1/ecy3546.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171201/2/ecy3546-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171201/3/ecy3546_am.pdf
dc.identifier.doi10.1002/ecy.3546
dc.identifier.sourceEcology
dc.identifier.citedreferenceRobertson, G. P., D. Wedin, P. M. Groffman, J. M. Blair, E. A. Holland, K. J. Nadelhoffer, and D. Harris. 1999. Soil carbon and nitrogen availability: nitrogen mineralization, nitrification, and soil respiration potentials. Pages 258 – 271 in G. P. Roberston, D. C. Coleman, C. S. Bledsoe, and P. Sollins, editors. Standard soil methods for long‐term ecological research, long‐term ecological research network series. Oxford University Press, Oxford, New York, USA.
dc.identifier.citedreferenceLyons, K. G., and M. W. Schwartz. 2001. Rare species loss alters ecosystem function—invasion resistance. Ecology Letters 4: 358 – 365.
dc.identifier.citedreferenceMcLaren, J. R., and R. Turkington. 2010. Ecosystem properties determined by plant functional group identity. Journal of Ecology 98: 459 – 469.
dc.identifier.citedreferenceNaeem, S., L. J. Thompson, S. P. Lawler, J. H. Lawton, and R. M. Woodfin. 1995. Empirical evidence that declining species diversity may alter the performance of terrestrial ecosystems. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 347: 249 – 262.
dc.identifier.citedreferenceOckendon, N., et al. 2014. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Global Change Biology 20: 2221 – 2229.
dc.identifier.citedreferenceOksanen, J., et al. 2019. Vegan: community ecology package. https://cran.r‐project.org/web/packages/vegan/index.html
dc.identifier.citedreferenceOliver, T. H., et al. 2015. Biodiversity and resilience of ecosystem functions. Trends in Ecology & Evolution 30: 673 – 684.
dc.identifier.citedreferenceParton, W., et al. 2007. Global‐scale similarities in nitrogen release patterns during long‐term decomposition. Science 315: 361 – 364.
dc.identifier.citedreferencePugnaire, F. I., J. A. Morillo, J. Peñuelas, P. B. Reich, R. D. Bardgett, A. Gaxiola, D. A. Wardle, and W. H. van der Putten. 2019. Climate change effects on plant‐soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Science Advances 5: eaaz1834.
dc.identifier.citedreferenceRead, Q. D., J. A. Henning, A. T. Classen, and N. J. Sanders. 2018. Aboveground resilience to species loss but belowground resistance to nitrogen addition in a montane plant community. Journal of Plant Ecology 11: 351 – 363.
dc.identifier.citedreferenceRewcastle, K. E., J. A. Henning, Q. D. Read, R. E. Irwin, N. J. Sanders, and A. T. Classen. 2021. Effects of plant removal on mineralization rates at the Rocky Mountain Biological Laboratory, Gunnison County, Colorado: 2018 ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/11a8123a58cbb45d76c61fbb1f5b88d7
dc.identifier.citedreferenceRStudio Team. 2016. RStudio: Integrated Development for R. RStudio, Boston, Massachusetts, USA.
dc.identifier.citedreferenceSaiya‐Cork, K. R., R. L. Sinsabaugh, and D. R. Zak. 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry 34: 1309 – 1315.
dc.identifier.citedreferenceSmith, M. D., and A. K. Knapp. 2003. Dominant species maintain ecosystem function with non‐random species loss. Ecology Letters 6: 509 – 517.
dc.identifier.citedreferenceSundqvist, M. K., N. J. Sanders, and D. A. Wardle. 2013. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics 44: 261 – 280.
dc.identifier.citedreferenceSymstad, A. J., D. Tilman, J. Willson, and J. M. H. Knops. 1998. Species loss and ecosystem functioning: effects of species identity and community composition. Oikos 81: 389 – 397.
dc.identifier.citedreferenceTilman, D., and J. A. Downing. 1994. Biodiversity and stability in grasslands. Nature 367: 363 – 365.
dc.identifier.citedreferenceTilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie, and E. Siemann. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277: 1300 – 1302.
dc.identifier.citedreferenceTilman, D., D. Wedin, and J. Knops. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718 – 720.
dc.identifier.citedreferencevan der Putten, W. H., M. A. Bradford, E. P. Brinkman, T. F. J. van de Voorde, and G. F. Veen. 2016. Where, when and how plant–soil feedback matters in a changing world. Functional Ecology 30: 1109 – 1121.
dc.identifier.citedreferenceWang, J., J. Sun, Z. Yu, Y. Li, D. Tian, B. Wang, Z. Li, and S. Niu. 2019. Vegetation type controls root turnover in global grasslands. Global Ecology and Biogeography 28: 442 – 455.
dc.identifier.citedreferenceWardle, D. A., R. D. Bardgett, R. M. Callaway, and W. H. van der Putten. 2011. Terrestrial ecosystem responses to species gains and losses. Science 332: 1273 – 1277.
dc.identifier.citedreferenceWardle, D. A., K. I. Bonner, G. M. Barker, G. W. Yeates, K. S. Nicholson, R. D. Bardgett, R. N. Watson, and A. Ghani. 1999. Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecological Monographs 69: 535 – 568.
dc.identifier.citedreferenceWardle, D. A., M. J. Gundale, A. Jäderlund, and M.‐C. Nilsson. 2013. Decoupled long‐term effects of nutrient enrichment on aboveground and belowground properties in subalpine tundra. Ecology 94: 904 – 919.
dc.identifier.citedreferenceWeaver, J. E. 1915. A study of the root‐systems of prairie plants of Southeastern Washington. Plant World 18: 227 – 248.
dc.identifier.citedreferenceWhite, H. 1980. A heteroskedasticity‐consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48: 817 – 838.
dc.identifier.citedreferenceWilke, B. J., and R. E. Irwin. 2010. Variation in the phenology and abundance of flowering by native and exotic plants in subalpine meadows. Biological Invasions 12: 2363 – 2372.
dc.identifier.citedreferenceZak, D. R., W. E. Holmes, D. C. White, A. D. Peacock, and D. Tilman. 2003. Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology 84: 2042 – 2050.
dc.identifier.citedreferenceKlanderud, K., and Ø. Totland. 2005. Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology 86: 2047 – 2054.
dc.identifier.citedreferenceAdler, P. B., H. J. Dalgleish, and S. P. Ellner. 2012. Forecasting plant community impacts of climate variability and change: when do competitive interactions matter? Journal of Ecology 100: 478 – 487.
dc.identifier.citedreferenceAnderson, M. J., K. E. Ellingsen, and B. H. McArdle. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9: 683 – 693.
dc.identifier.citedreferenceAvolio, M. L., E. J. Forrestel, C. C. Chang, K. J. La Pierre, K. T. Burghardt, and M. D. Smith. 2019. Demystifying dominant species. New Phytologist 223: 1106 – 1126.
dc.identifier.citedreferenceBaert, J. M., N. Eisenhauer, C. R. Janssen, and F. D. Laender. 2018. Biodiversity effects on ecosystem functioning respond unimodally to environmental stress. Ecology Letters 21: 1191 – 1199.
dc.identifier.citedreferenceBardgett, R. D., P. Manning, E. Morriën, and F. T. De Vries. 2013. Hierarchical responses of plant–soil interactions to climate change: consequences for the global carbon cycle. Journal of Ecology 101: 334 – 343.
dc.identifier.citedreferenceBrooker, R. W. 2006. Plant–plant interactions and environmental change. New Phytologist 171: 271 – 284.
dc.identifier.citedreferenceBrown, M. B., and A. B. Forsythe. 1974. Robust tests for the equality of variances. Journal of the American Statistical Association 69: 364 – 367.
dc.identifier.citedreferenceChapin III, F. S. 1998. Ecosystem consequences of changing biodiversity. BioScience 48: 45 – 52.
dc.identifier.citedreferenceClassen, A. T., M. K. Sundqvist, J. A. Henning, G. S. Newman, J. A. M. Moore, M. A. Cregger, L. C. Moorhead, and C. M. Patterson. 2015. Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: What lies ahead? Ecosphere 6: art130.
dc.identifier.citedreferenceDíaz, S., A. J. Symstad, F. Stuart Chapin, D. A. Wardle, and L. F. Huenneke. 2003. Functional diversity revealed by removal experiments. Trends in Ecology & Evolution 18: 140 – 146.
dc.identifier.citedreferenceDoane, T. A., and W. R. Horwáth. 2003. Spectrophotometric determination of nitrate with a single reagent. Analytical Letters 36: 2713 – 2722.
dc.identifier.citedreferenceFox, J. W., and B. Kerr. 2012. Analyzing the effects of species gain and loss on ecosystem function using the extended Price equation partition. Oikos 121: 290 – 298.
dc.identifier.citedreferenceFox, J., and S. Weisberg. 2019. An R companion to applied regression. Sage, Thousand Oaks, California, USA.
dc.identifier.citedreferenceGarcía‐Palacios, P., N. Gross, J. Gaitán, and F. T. Maestre. 2018. Climate mediates the biodiversity–ecosystem stability relationship globally. Proceedings of the National Academy of Sciences USA 115: 8400 – 8405.
dc.identifier.citedreferenceGastwirth, J. L., Y. R. Gel, W. L. Wallace Hui, V. Lyubchich, W. Miao, and Noguchi, K. 2019. lawstat: tools for biostatistics, public policy, and law. R package version 3.3. https://cran.r‐project.org/web/packages/lawstat/index.html
dc.identifier.citedreferenceGill, R. A., and R. B. Jackson. 2000. Global patterns of root turnover for terrestrial ecosystems. New Phytologist 147: 13 – 31.
dc.identifier.citedreferenceGilman, S. E., M. C. Urban, J. Tewksbury, G. W. Gilchrist, and R. D. Holt. 2010. A framework for community interactions under climate change. Trends in Ecology & Evolution 25: 325 – 331.
dc.identifier.citedreferenceGrace, J. B., et al. 2016. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529: 390 – 393.
dc.identifier.citedreferenceHatfield, R. D., D. M. Rancour, and J. M. Marita. 2017. Grass cell walls: a story of cross‐linking. Frontiers in Plant Science 7: 2056.
dc.identifier.citedreferenceHenning, J. A., Q. D. Read, N. J. Sanders, and A. T. Classen. 2019. Fungal colonization of plant roots is resistant to nitrogen addition and resilient to dominant species losses. Ecosphere 10: e02640.
dc.identifier.citedreferenceHoogsteen, M. J. J., E. A. Lantinga, E. J. Bakker, J. C. J. Groot, and P. A. Tittonell. 2015. Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. European Journal of Soil Science 66: 320 – 328.
dc.identifier.citedreferenceJarrell, W. M., D. E. Armstrong, D. F. Grigal, E. F. Kelly, H. C. Monger, and D. A. Wedin. 1999. Soil Water and Temperature Status. Pages 55 – 73 in G. P. Robertson, D. C. Coleman, C. S. Bledsoe, and P. Sollins, editors. Standard Soil Methods for Long‐Term Ecological Research, Long‐Term Ecological Research Network Series. Oxford University Press, Oxford, New York, USA.
dc.identifier.citedreferenceJohnson, D., G. K. Phoenix, and J. P. Grime. 2008. Plant community composition, not diversity, regulates soil respiration in grasslands. Biology Letters 4: 345 – 348.
dc.identifier.citedreferenceKaisermann, A., F. T. de Vries, R. I. Griffiths, and R. D. Bardgett. 2017. Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytologist 215: 1413 – 1424.
dc.identifier.citedreferenceKardol, P., N. Fanin, and D. A. Wardle. 2018. Long‐term effects of species loss on community properties across contrasting ecosystems. Nature 557: 710 – 713.
dc.identifier.citedreferenceKlanderud, K. 2005. Climate change effects on species interactions in an alpine plant community. Journal of Ecology 93: 127 – 137.
dc.identifier.citedreferenceLeifeld, J., S. Meyer, K. Budge, M. T. Sebastia, M. Zimmermann, and J. Fuhrer. 2015. Turnover of grassland roots in mountain ecosystems revealed by their radiocarbon signature: role of temperature and management. PLoS ONE 10: e0119184.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.