Show simple item record

Conductive and injectable hyaluronic acid/gelatin/gold nanorod hydrogels for enhanced surgical translation and bioprinting

dc.contributor.authorKiyotake, Emi A.
dc.contributor.authorThomas, Emily E.
dc.contributor.authorHomburg, Hannah B.
dc.contributor.authorMilton, Camille K.
dc.contributor.authorSmitherman, Adam D.
dc.contributor.authorDonahue, Nathan D.
dc.contributor.authorFung, Kar-Ming
dc.contributor.authorWilhelm, Stefan
dc.contributor.authorMartin, Michael D.
dc.contributor.authorDetamore, Michael S.
dc.date.accessioned2022-01-06T15:50:26Z
dc.date.available2023-03-06 10:50:23en
dc.date.available2022-01-06T15:50:26Z
dc.date.issued2022-02
dc.identifier.citationKiyotake, Emi A.; Thomas, Emily E.; Homburg, Hannah B.; Milton, Camille K.; Smitherman, Adam D.; Donahue, Nathan D.; Fung, Kar-Ming ; Wilhelm, Stefan; Martin, Michael D.; Detamore, Michael S. (2022). "Conductive and injectable hyaluronic acid/gelatin/gold nanorod hydrogels for enhanced surgical translation and bioprinting." Journal of Biomedical Materials Research Part A 110(2): 365-382.
dc.identifier.issn1549-3296
dc.identifier.issn1552-4965
dc.identifier.urihttps://hdl.handle.net/2027.42/171203
dc.description.abstractThere is growing evidence indicating the need to combine the rehabilitation and regenerative medicine fields to maximize functional recovery after spinal cord injury (SCI), but there are limited methods to synergistically combine the fields. Conductive biomaterials may enable synergistic combination of biomaterials with electric stimulation (ES), which may enable direct ES of neurons to enhance axon regeneration and reorganization for better functional recovery; however, there are three major challenges in developing conductive biomaterials: (1) low conductivity of conductive composites, (2) many conductive components are cytotoxic, and (3) many conductive biomaterials are pre- formed scaffolds and are not injectable. Pre- formed, noninjectable scaffolds may hinder clinical translation in a surgical context for the most common contusion- type of SCI. Alternatively, an injectable biomaterial, inspired by lessons from bioinks in the bioprinting field, may be more translational for contusion SCIs. Therefore, in the current study, a conductive hydrogel was developed by incorporating high aspect ratio citrate- gold nanorods (GNRs) into a hyaluronic acid and gelatin hydrogel. To fabricate nontoxic citrate- GNRs, a robust synthesis for high aspect ratio GNRs was combined with an indirect ligand exchange to exchange a cytotoxic surfactant for nontoxic citrate. For enhanced surgical placement, the hydrogel precursor solution (i.e., before crosslinking) was paste- like, injectable/bioprintable, and fast- crosslinking (i.e., 4- min). Finally, the crosslinked hydrogel supported the adhesion/viability of seeded rat neural stem cells in vitro. The current study developed and characterized a GNR conductive hydrogel/bioink that provided a refinable and translational platform for future synergistic combination with ES to improve functional recovery after SCI.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherinjectable spinal cord injury
dc.subject.otherbioprinting
dc.subject.otherconductive biomaterial
dc.subject.othergold nanorods
dc.titleConductive and injectable hyaluronic acid/gelatin/gold nanorod hydrogels for enhanced surgical translation and bioprinting
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171203/1/jbma37294.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171203/2/jbma37294_am.pdf
dc.identifier.doi10.1002/jbm.a.37294
dc.identifier.sourceJournal of Biomedical Materials Research Part A
dc.identifier.citedreferenceNikoobakht B, El- Sayed MA. Preparation and growth mechanism of gold Nanorods (NRs) using seed- mediated growth method. Chem Mater. 2003; 15 ( 10 ): 1957 - 1962.
dc.identifier.citedreferenceNavaei A, Rahmani Eliato K, Ros R, Migrino RQ, Willis BC, Nikkhah M. The influence of electrically conductive and non- conductive nanocomposite scaffolds on the maturation and excitability of engineered cardiac tissues. Biomater Sci. 2019; 7 ( 2 ): 585 - 595.
dc.identifier.citedreferenceNavaei A, Saini H, Christenson W, Sullivan RT, Ros R, Nikkhah M. Gold nanorod- incorporated gelatin- based conductive hydrogels for engineering cardiac tissue constructs. Acta Biomater. 2016; 41: 133 - 146.
dc.identifier.citedreferenceZhu K, Shin SR, van Kempen T, et al. Gold nanocomposite bioink for printing 3D cardiac constructs. Adv Funct Mater. 2017; 27 ( 12 ): 1605352.
dc.identifier.citedreferenceZhang Y, Newton B, Lewis E, et al. Cytotoxicity of organic surface coating agents used for nanoparticles synthesis and stability. Toxicol In Vitro. 2015; 29 ( 4 ): 762 - 768.
dc.identifier.citedreferenceZhou S, Huo D, Goines S, et al. Enabling complete ligand exchange on the surface of gold nanocrystals through the deposition and then etching of silver. J Am Chem Soc. 2018; 140 ( 38 ): 11898 - 11901.
dc.identifier.citedreferenceTownsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore MS. Flow behavior prior to crosslinking: the need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting. Prog Polym Sci. 2019; 91: 126 - 140.
dc.identifier.citedreferenceKiyotake EA, Douglas AW, Thomas EE, Nimmo SL, Detamore MS. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting. Acta Biomater. 2019; 95: 176 - 187.
dc.identifier.citedreferenceVigderman L, Zubarev ER. High- yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chem Mater. 2013; 25 ( 8 ): 1450 - 1457.
dc.identifier.citedreferenceDonahue ND, Francek ER, Kiyotake E, et al. Assessing nanoparticle colloidal stability with single- particle inductively coupled plasma mass spectrometry (SP- ICP- MS). Anal Bioanal Chem. 2020; 412 ( 22 ): 5205 - 5216.
dc.identifier.citedreferenceLee JC, Donahue ND, Mao AS, et al. Exploring Maleimide- based nanoparticle surface engineering to control cellular interactions. ACS Appl Nano Mater. 2020; 3 ( 3 ): 2421 - 2429.
dc.identifier.citedreferenceHerren B Charara M Saha MC Altan MC, Liu Y. Rapid microwave polymerization of porous Nanocomposites with Piezoresistive sensing function. Nanomaterials (Basel). 2020; 10 ( 2 ): 233.
dc.identifier.citedreferenceTownsend JM, Sali G, Homburg HB, et al. Thiolated bone and tendon tissue particles covalently bound in hydrogels for in vivo calvarial bone regeneration. Acta Biomater. 2020; 104: 66 - 75.
dc.identifier.citedreferenceTherriault D, White SR, Lewis JA. Rheological behavior of fugitive organic inks for direct- write assembly. Appl Rheol. 2007; 17 ( 1 ): 10112- 1- 10112- 8.
dc.identifier.citedreferenceRibeiro A, Blokzijl MM, Levato R, et al. Assessing bioink shape fidelity to aid material development in 3D bioprinting. Biofabrication. 2017; 10 ( 1 ): 014102.
dc.identifier.citedreferenceBeck EC, Barragan M, Tadros MH, Gehrke SH, Detamore MS. Approaching the compressive modulus of articular cartilage with a decellularized cartilage- based hydrogel. Acta Biomater. 2016; 38: 94 - 105.
dc.identifier.citedreferenceOrendorff CJ, Murphy CJ. Quantitation of metal content in the silver- assisted growth of gold nanorods. J Phys Chem B. 2006; 110 ( 9 ): 3990 - 3994.
dc.identifier.citedreferenceDvir T, Timko BP, Brigham MD, et al. Nanowired three- dimensional cardiac patches. Nat Nanotechnol. 2011; 6 ( 11 ): 720 - 725.
dc.identifier.citedreferenceBaei P, Jalili- Firoozinezhad S, Rajabi- Zeleti S, Tafazzoli- Shadpour M, Baharvand H, Aghdami N. Electrically conductive gold nanoparticle- chitosan thermosensitive hydrogels for cardiac tissue engineering. Korean J Couns Psychother. 2016; 63: 131 - 141.
dc.identifier.citedreferencePourjavadi A, Doroudian M, Ahadpour A, Azari S. Injectable chitosan/kappa- carrageenan hydrogel designed with au nanoparticles: a conductive scaffold for tissue engineering demands. Int J Biol Macromol. 2019; 126: 310 - 317.
dc.identifier.citedreferenceYou JO, Rafat M, Ye GJ, Auguste DT. Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Lett. 2011; 11 ( 9 ): 3643 - 3648.
dc.identifier.citedreferenceMehtala JG, Zemlyanov DY, Max JP, Kadasala N, Zhao S, Wei A. Citrate- stabilized gold Nanorods. Langmuir. 2014; 30 ( 46 ): 13727 - 13730.
dc.identifier.citedreferenceZhang Y, Fan W, Wang K, Wei H, Zhang R, Wu Y. Novel preparation of Au nanoparticles loaded Laponite nanoparticles/ECM injectable hydrogel on cardiac differentiation of resident cardiac stem cells to cardiomyocytes. J Photochem Photobiol B. 2019; 192: 49 - 54.
dc.identifier.citedreferenceNezhad- Mokhtari P, Akrami- Hasan- Kohal M, Ghorbani M. An injectable chitosan- based hydrogel scaffold containing gold nanoparticles for tissue engineering applications. Int J Biol Macromol. 2020; 154: 198 - 205.
dc.identifier.citedreferenceSkardal A, Zhang J, McCoard L, Oottamasathien S, Prestwich GD. Dynamically crosslinked gold nanoparticle - hyaluronan hydrogels. Adv Mater. 2010; 22 ( 42 ): 4736 - 4740.
dc.identifier.citedreferenceKhaing ZZ, Ehsanipour A, Hofstetter CP, Seidlits SK. Injectable hydrogels for spinal cord repair: a focus on swelling and Intraspinal pressure. Cells Tissues Organs. 2016; 202 ( 1- 2 ): 67 - 84.
dc.identifier.citedreferenceYadid M, Feiner R, Dvir T. Gold nanoparticle- integrated scaffolds for tissue engineering and regenerative medicine. Nano Lett. 2019; 19 ( 4 ): 2198 - 2206.
dc.identifier.citedreferenceVaca- Gonzalez JJ, Clara- Trujillo S, Guillot- Ferriols M, et al. Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid: gelatin injectable hydrogels. Bioelectrochemistry. 2020; 134: 107536.
dc.identifier.citedreferenceRamos CM, Bargues MJM, Roca FG, et al. Electrical stimulation increases schwann cells proliferation inside hyaluronic acid conduits. 2018; 2018 ( 10- 13 ): 1 - 2.
dc.identifier.citedreferenceYarrow JF, Kok HJ, Phillips EG, et al. Locomotor training with adjuvant testosterone preserves cancellous bone and promotes muscle plasticity in male rats after severe spinal cord injury. J Neurosci Res. 2020; 98 ( 5 ): 843 - 868.
dc.identifier.citedreferenceNational Spinal Cord Injury Statistical Center. Facts and figures at a glance. Birmingham, AL: University of Alabama at Birmingham; 2020: 2020.
dc.identifier.citedreferenceKiyotake EA, Martin MD, Detamore MS. Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta Biomater. 2020. https://doi.org/10.1016/j.actbio.2020.12.021.
dc.identifier.citedreferenceWillett NJ, Boninger ML, Miller LJ, et al. Taking the next steps in regenerative rehabilitation: establishment of a new interdisciplinary field. Arch Phys Med Rehabil. 2020; 101 ( 5 ): 917 - 923.
dc.identifier.citedreferenceLin J, Anopas D, Milbreta U, et al. Regenerative rehabilitation: exploring the synergistic effects of rehabilitation and implantation of a bio- functional scaffold in enhancing nerve regeneration. Biomater Sci. 2019; 7 ( 12 ): 5150 - 5160.
dc.identifier.citedreferencePalza H, Zapata PA, Angulo- Pineda C. Electroactive smart polymers for biomedical applications. Materials (Basel). 2019; 12 ( 2 ): 277.
dc.identifier.citedreferenceGhasemi- Mobarakeh L, Prabhakaran MP, Morshed M, et al. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med. 2011; 5 ( 4 ): e17 - e35.
dc.identifier.citedreferenceZhu R, Sun Z, Li C, Ramakrishna S, Chiu K, He L. Electrical stimulation affects neural stem cell fate and function in vitro. Exp Neurol. 2019; 319: 112963.
dc.identifier.citedreferenceNavaei A, Moore N, Sullivan RT, Truong D, Migrino RQ, Nikkhah M. Electrically conductive hydrogel- based micro- topographies for the development of organized cardiac tissues. RSC Adv. 2017; 7 ( 6 ): 3302 - 3312.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.