Show simple item record

Near‐Infrared Multilayer MoS2 Photoconductivity‐Enabled Ultrasensitive Homogeneous Plasmonic Colorimetric Biosensing

dc.contributor.authorPark, Younggeun
dc.contributor.authorRyu, Byunghoon
dc.contributor.authorKi, Seung Jun
dc.contributor.authorLiang, Xiaogan
dc.contributor.authorKurabayashi, Katsuo
dc.date.accessioned2022-01-06T15:50:45Z
dc.date.available2023-01-06 10:50:43en
dc.date.available2022-01-06T15:50:45Z
dc.date.issued2021-12
dc.identifier.citationPark, Younggeun; Ryu, Byunghoon; Ki, Seung Jun; Liang, Xiaogan; Kurabayashi, Katsuo (2021). "Near‐Infrared Multilayer MoS2 Photoconductivity‐Enabled Ultrasensitive Homogeneous Plasmonic Colorimetric Biosensing." Advanced Materials Interfaces 8(24): n/a-n/a.
dc.identifier.issn2196-7350
dc.identifier.issn2196-7350
dc.identifier.urihttps://hdl.handle.net/2027.42/171210
dc.description.abstractThe ability to detect low‐abundance proteins in human body fluids plays a critical role in proteomic research to achieve a comprehensive understanding of protein functions and early‐stage disease diagnosis to reduce mortality rates. Ultrasensitive (sub‐fM), rapid, simple “mix‐and‐read” plasmonic colorimetric biosensing of large‐size (≈180 kDa) proteins in biofluids using an ultralow‐noise multilayer molybdenum disulfide (MoS2) photoconducting channel is reported here. With its out‐of‐plane structure optimized to minimize carrier scattering, the multilayer MoS2 channel operated under near‐infrared illumination enables the detection of a subtle plasmonic extinction shift caused by antigen‐induced nanoprobe aggregation. The demonstrated biosensing strategy allows quantifying carcinoembryonic antigen in unprocessed whole blood with a dynamic range of 106, a sample‐to‐answer time of 10 min, and a limit of detection of 0.1–3 pg mL−1, which is ≈100‐fold more sensitive than the clinical‐standard enzyme‐linked immunosorbent assays. The biosensing methodology can be broadly used to realize timely personalized diagnostics and physiological monitoring of diseases in point‐of‐care settings.A plasmonic colorimetric biosensing platform for rapid and ultrasensitive detection of cancer biomarkers in biofluids is developed using an ultralow‐noise multilayer molybdenum disulfide (MoS2) photoconducting channel. Near‐infrared operation of the multilayer MoS2 channel coupled with a nanoparticle aggregation‐based assay enables user‐friendly homogeneous on‐chip immunosensing that is poised for point‐of‐care testing.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlocalized surface plasmon resonance
dc.subject.otherpoint‐of‐care immunoassay
dc.subject.otherplasmonic colorimetric biosensors
dc.subject.othercarcinoembryonic antigen detection
dc.subject.othermultilayer MoS2
dc.titleNear‐Infrared Multilayer MoS2 Photoconductivity‐Enabled Ultrasensitive Homogeneous Plasmonic Colorimetric Biosensing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171210/1/admi202101291_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171210/2/admi202101291.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171210/3/admi202101291-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/admi.202101291
dc.identifier.sourceAdvanced Materials Interfaces
dc.identifier.citedreferenceK. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Phys. Rev. Lett. 2010, 105, 136805.
dc.identifier.citedreferenceP. Moitra, M. Alafeef, K. Dighe, M. B. Frieman, D. Pan, ACS Nano 2020, 14, 7617.
dc.identifier.citedreferenceR. de la Rica, M. M. Stevens, Nat. Nanotechnol. 2012, 7, 821.
dc.identifier.citedreferenceY. Park, B. Ryu, Q. Deng, B. Pan, Y. Song, Y. Tian, H. B. Alam, Y. Li, X. Liang, K. Kurabayashi, Small 2020, 16, 1905611.
dc.identifier.citedreferenceY. Park, B. Ryu, S. J. Ki, B. McCracken, A. Pennington, K. R. Ward, X. Liang, K. Kurabayashi, ACS Nano 2021, 15, 7722.
dc.identifier.citedreferenceY. Park, B. Ryu, B.‐R. Oh, Y. Song, X. Liang, K. Kurabayashi, ACS Nano 2017, 11, 5697.
dc.identifier.citedreferenceL. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.‐J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, K. S. Novoselov, Science 2013, 340, 1311.
dc.identifier.citedreferenceS. Wi, M. Chen, H. Nam, A. C. Liu, E. Meyhofer, X. Liang, Appl. Phys. Lett. 2014, 104, 232103.
dc.identifier.citedreferenceA. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.‐Y. Chim, G. Galli, F. Wang, Nano Lett. 2010, 10, 1271.
dc.identifier.citedreferenceS. Lebègue, O. Eriksson, Phys. Rev. B 2009, 79, 115409.
dc.identifier.citedreferenceK. F. Mak, J. Shan, Nat. Photonics 2016, 10, 216.
dc.identifier.citedreferenceJ. D. Cohen, L. Li, Y. Wang, C. Thoburn, B. Afsari, L. Danilova, C. Douville, A. A. Javed, F. Wong, A. Mattox, R. H. Hruban, C. L. Wolfgang, M. G. Goggins, M. Dal Molin, T.‐L. Wang, R. Roden, A. P. Klein, J. Ptak, L. Dobbyn, J. Schaefer, N. Silliman, M. Popoli, J. T. Vogelstein, J. D. Browne, R. E. Schoen, R. E. Brand, J. Tie, P. Gibbs, H.‐L. Wong, A. S. Mansfield, J. Jen, S. M. Hanash, M. Falconi, P. J. Allen, S. Zhou, C. Bettegowda, L. A. Diaz, C. Tomasetti, K. W. Kinzler, B. Vogelstein, A. M. Lennon, N. Papadopoulos, Science 2018, 359, 926.
dc.identifier.citedreferenceD. Aili, M. M. Stevens, Chem. Soc. Rev. 2010, 39, 3358.
dc.identifier.citedreferenceP. L. Wei, L. T. Lee, L. M. Tseng, K. W. Huang, Sci. Rep. 2018, 8, 10002.
dc.identifier.citedreferenceX. Yuan, T. Bian, J. Liu, H. Ke, J. Feng, Q. Zhang, L. Qian, X. Li, Y. Liu, J. Zhang, Oncotarget 2017, 8, 59324.
dc.identifier.citedreferenceG. M. Saied, W. H. El‐Metenawy, M. S. Elwan, N. R. Dessouki, World J. Surg. Oncol. 2007, 5, 4.
dc.identifier.citedreferenceJ. Zheng, L. Sun, W. Yuan, J. Xu, X. Yu, F. Wang, L. Sun, Y. Zeng, Journal of oral pathology & medicine: official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 2018, 47, 830.
dc.identifier.citedreferenceM. Retout, H. Valkenier, E. Triffaux, T. Doneux, K. Bartik, G. Bruylants, ACS Sens. 2016, 1, 929.
dc.identifier.citedreferenceD. Aili, R. Selegard, L. Baltzer, K. Enander, B. Liedberg, Small 2009, 5, 2445.
dc.identifier.citedreferenceC. C. Huang, Y. F. Huang, Z. H. Cao, W. H. Tan, H. T. Chang, Anal. Chem. 2005, 77, 5735.
dc.identifier.citedreferenceH. Wei, B. L. Li, J. Li, E. K. Wang, S. J. Dong, Chem. Commun. 2007, 3735.
dc.identifier.citedreferenceH. Q. Liu, P. F. Rong, H. W. Jia, J. Yang, B. Dong, Q. Dong, C. J. Yang, P. Z. Hu, W. Wang, H. T. Liu, D. B. Liu, Theranostics 2016, 6, 54.
dc.identifier.citedreferenceM. Grzelczak, J. Pérez‐Juste, P. Mulvaney, L. M. Liz‐Marzán, Chem. Soc. Rev. 2008, 37, 1783.
dc.identifier.citedreferenceP. Chen, M. T. Chung, W. McHugh, R. Nidetz, Y. Li, J. Fu, T. T. Cornell, T. P. Shanley, K. Kurabayashi, ACS Nano 2015, 9, 4173.
dc.identifier.citedreferenceB.‐R. Oh, N.‐T. Huang, W. Chen, J. H. Seo, P. Chen, T. T. Cornell, T. P. Shanley, J. Fu, K. Kurabayashi, ACS Nano 2014, 8, 2667.
dc.identifier.citedreferenceA. K. Mattox, C. Bettegowda, S. Zhou, N. Papadopoulos, K. W. Kinzler, B. Vogelstein, Sci. Transl. Med. 2019, 11, eaay1984.
dc.identifier.citedreferenceS. Hammarström, Semin. Cancer Biol. 1999, 9, 67.
dc.identifier.citedreferenceL. Hernández, A. Espasa, C. Fernández, A. Candela, C. MartÍn, S. Romero, Lung Cancer 2002, 36, 83.
dc.identifier.citedreferenceF. Naghibalhossaini, P. Ebadi, Cancer Lett. 2006, 234, 158.
dc.identifier.citedreferenceS. P. Prete, L. Rossi, P. P. Correale, M. Turriziani, S. Baier, G. Tamburrelli, L. De Vecchis, E. Bonmassar, A. Aquino, Pharmacol. Res. 2005, 52, 167.
dc.identifier.citedreferenceE. J. Vankampen, W. G. Zijlstra, Adv. Clin. Chem. 1983, 23, 199.
dc.identifier.citedreferenceC.‐L. Tsai, J.‐C. Chen, W.‐J. Wang, Journal of Medical and Biological Engineering 2001, 21, 7.
dc.identifier.citedreferenceM. Chen, H. Nam, H. Rokni, S. Wi, J. S. Yoon, P. Chen, K. Kurabayashi, W. Lu, X. Liang, ACS Nano 2015, 9, 8773.
dc.identifier.citedreferenceY. Zhihao, O. Zhun‐Yong, L. Songlin, X. Jian‐Bin, Z. Gang, Z. Yong‐Wei, S. Yi, W. Xinran, Adv. Funct. Mater. 2017, 27, 1604093.
dc.identifier.citedreferenceS. Wi, H. Kim, M. Chen, H. Nam, L. J. Guo, E. Meyhofer, X. Liang, ACS Nano 2014, 8, 5270.
dc.identifier.citedreferenceK. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Chem. Rev. 2012, 112, 2739.
dc.identifier.citedreferenceK. A. Willets, R. P. V. Duyne, Annu. Rev. Phys. Chem. 2007, 58, 267.
dc.identifier.citedreferenceP. D. Howes, S. Rana, M. M. Stevens, Chem. Soc. Rev. 2014, 43, 3835.
dc.identifier.citedreferenceL. Tang, J. Li, ACS Sens. 2017, 2, 857.
dc.identifier.citedreferenceW. Zhou, X. Gao, D. Liu, X. Chen, Chem. Rev. 2015, 115, 10575.
dc.identifier.citedreferenceZ. Gao, Z. Qiu, M. Lu, J. Shu, D. Tang, Biosens. Bioelectron. 2017, 89, 1006.
dc.identifier.citedreferenceZ. Gao, M. Xu, L. Hou, G. Chen, D. Tang, Anal. Chem. 2013, 85, 6945.
dc.identifier.citedreferenceD. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, C. A. Mirkin, Angew. Chem., Int. Ed. 2010, 49, 3280.
dc.identifier.citedreferenceR. S. Gaster, D. A. Hall, C. H. Nielsen, S. J. Osterfeld, H. Yu, K. E. Mach, R. J. Wilson, B. Murmann, J. C. Liao, S. S. Gambhir, S. X. Wang, Nat. Med. 2009, 15, 1327.
dc.identifier.citedreferenceR. M. Nagler, Oral Oncol. 2009, 45, 1006.
dc.identifier.citedreferenceD. Sidransky, Nat. Rev. Cancer 2002, 2, 210.
dc.identifier.citedreferenceL. Wu, X. Qu, Chem. Soc. Rev. 2015, 44, 2963.
dc.identifier.citedreferenceY. Xianyu, Y. Chen, X. Jiang, Anal. Chem. 2015, 87, 10688.
dc.identifier.citedreferenceX.‐M. Nie, R. Huang, C.‐X. Dong, L.‐J. Tang, R. Gui, J.‐H. Jiang, Biosens. Bioelectron. 2014, 58, 314.
dc.identifier.citedreferenceL. Rodríguez‐Lorenzo, R. de la Rica, R. A. Álvarez‐Puebla, L. M. Liz‐Marzán, M. M. Stevens, Nat. Mater. 2012, 11, 604.
dc.identifier.citedreferenceR. Ren, G. Cai, Z. Yu, D. Tang, Sens. Actuators, B 2018, 265, 174.
dc.identifier.citedreferenceR. Ren, G. Cai, Z. Yu, Y. Zeng, D. Tang, Anal. Chem. 2018, 90, 11099.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.