Show simple item record

Sedimentary pyrite sulfur isotope compositions preserve signatures of the surface microbial mat environment in sediments underlying low- oxygen cyanobacterial mats

dc.contributor.authorGomes, Maya L.
dc.contributor.authorKlatt, Judith M.
dc.contributor.authorDick, Gregory J.
dc.contributor.authorGrim, Sharon L.
dc.contributor.authorRico, Kathryn I.
dc.contributor.authorMedina, Matthew
dc.contributor.authorZiebis, Wiebke
dc.contributor.authorKinsman-Costello, Lauren
dc.contributor.authorSheldon, Nathan D.
dc.contributor.authorFike, David A.
dc.date.accessioned2022-01-06T15:50:57Z
dc.date.available2023-02-06 10:50:55en
dc.date.available2022-01-06T15:50:57Z
dc.date.issued2022-01
dc.identifier.citationGomes, Maya L.; Klatt, Judith M.; Dick, Gregory J.; Grim, Sharon L.; Rico, Kathryn I.; Medina, Matthew; Ziebis, Wiebke; Kinsman-Costello, Lauren ; Sheldon, Nathan D.; Fike, David A. (2022). "Sedimentary pyrite sulfur isotope compositions preserve signatures of the surface microbial mat environment in sediments underlying low- oxygen cyanobacterial mats." Geobiology (1): 60-78.
dc.identifier.issn1472-4677
dc.identifier.issn1472-4669
dc.identifier.urihttps://hdl.handle.net/2027.42/171214
dc.description.abstractThe sedimentary pyrite sulfur isotope (δ34S) record is an archive of ancient microbial sulfur cycling and environmental conditions. Interpretations of pyrite δ34S signatures in sediments deposited in microbial mat ecosystems are based on studies of modern microbial mat porewater sulfide δ34S geochemistry. Pyrite δ34S values often capture δ34S signatures of porewater sulfide at the location of pyrite formation. However, microbial mats are dynamic environments in which biogeochemical cycling shifts vertically on diurnal cycles. Therefore, there is a need to study how the location of pyrite formation impacts pyrite δ34S patterns in these dynamic systems. Here, we present diurnal porewater sulfide δ34S trends and δ34S values of pyrite and iron monosulfides from Middle Island Sinkhole, Lake Huron. The sediment- water interface of this sinkhole hosts a low- oxygen cyanobacterial mat ecosystem, which serves as a useful location to explore preservation of sedimentary pyrite δ34S signatures in early Earth environments. Porewater sulfide δ34S values vary by up to ~25- ° throughout the day due to light- driven changes in surface microbial community activity that propagate downwards, affecting porewater geochemistry as deep as 7.5 cm in the sediment. Progressive consumption of the sulfate reservoir drives δ34S variability, instead of variations in average cell- specific sulfate reduction rates and/or sulfide oxidation at different depths in the sediment. The δ34S values of pyrite are similar to porewater sulfide δ34S values near the mat surface. We suggest that oxidative sulfur cycling and other microbial activity promote pyrite formation in and immediately adjacent to the microbial mat and that iron geochemistry limits further pyrite formation with depth in the sediment. These results imply that primary δ34S signatures of pyrite deposited in organic- rich, iron- poor microbial mat environments capture information about microbial sulfur cycling and environmental conditions at the mat surface and are only minimally affected by deeper sedimentary processes during early diagenesis.
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpyrite
dc.subject.othermicrobial mats
dc.subject.othermiddle island sinkhole
dc.subject.othergeomicrobiology
dc.subject.othersulfur isotopes
dc.titleSedimentary pyrite sulfur isotope compositions preserve signatures of the surface microbial mat environment in sediments underlying low- oxygen cyanobacterial mats
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171214/1/gbi12466_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171214/2/gbi12466.pdf
dc.identifier.doi10.1111/gbi.12466
dc.identifier.sourceGeobiology
dc.identifier.citedreferenceRaven, M. R., Sessions, A. L., Fischer, W. W., & Adkins, J. F. ( 2016 ). Sedimentary pyrite d34S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur. Geochimica et Cosmochimica Acta, 186, 120 - 134.
dc.identifier.citedreferenceRevsbech, N. P. ( 1989 ). An oxygen microsensor with a guard cathode. Limnology and Oceanography, 34, 474 - 478. https://doi.org/10.4319/lo.1989.34.2.0474
dc.identifier.citedreferenceRevsbech, N. P., Jorgensen, B. B., Blackburn, T. H., & Cohen, Y. ( 1983 ). Microelectrode studies of the photosynthesis and 02, H&5, and pH profiles of a microbial mat1. Limnology and Oceanography, 26, 1062 - 1074.
dc.identifier.citedreferenceRickard, D. T. ( 1975 ). Kinetics and mechanism of pyrite formation at low temperatures. American Journal of Science, 275, 636 - 652. https://doi.org/10.2475/ajs.275.6.636
dc.identifier.citedreferenceRickard, D. T. ( 1997 ). Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation. Geochimica et Cosmochimica Acta, 61, 115 - 134. https://doi.org/10.1016/S0016- 7037(96)00321- 3
dc.identifier.citedreferenceRickard, D. T. ( 2012 ). Sulfidic sediments and sedimentary rocks. Elsevier.
dc.identifier.citedreferenceRickard, D., Butler, I. B., & Oldroyd, A. ( 2001 ). A novel iron sulphide mineral switch and its implications for Earth and planetary science. Earth and Planetary Science Letters, 189, 85 - 91. https://doi.org/10.1016/S0012- 821X(01)00352- 1
dc.identifier.citedreferenceRickard, D., Grimes, S., Butler, I., Oldroyd, A., & Davies, K. L. ( 2007 ). Botanical constraints on pyrite formation. Chemical Geology, 236, 228 - 246. https://doi.org/10.1016/j.chemgeo.2006.09.011
dc.identifier.citedreferenceRickard, D. T., & Luther, G. W. ( 1997 ). Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The mechanism. Geochimica et Cosmochimica Acta, 61, 135 - 147. https://doi.org/10.1016/S0016- 7037(96)00322- 5
dc.identifier.citedreferenceRickard, D., & Luther, G. W. ( 2007 ). Chemistry of iron sulfides. Chemical Reviews, 107, 514 - 562. https://doi.org/10.1021/cr0503658
dc.identifier.citedreferenceRickard, D., & Morse, J. W. ( 2005 ). Acid volatile sulfide (AVS). Marine Chemistry, 97, 141 - 197. https://doi.org/10.1016/j.marchem.2005.08.004
dc.identifier.citedreferenceRickard, D. T., Oldroyd, A., & Cramp, A. ( 1999 ). Voltammetric evidence for soluble FeS complexes in anoxic estuarine muds. Estuaries, 22, 693 - 701. https://doi.org/10.2307/1353056
dc.identifier.citedreferenceRico, K. I., & Sheldon, N. D. ( 2019 ). Nutrient and iron cycling in a modern analogue for the redoxcline of a Proterozoic ocean shelf. Chemical Geology, 511, 42 - 50. https://doi.org/10.1016/j.chemgeo.2019.02.032
dc.identifier.citedreferenceRico, K. I., Sheldon, N. D., Gallagher, T. M., & Chappaz, A. ( 2019 ). Redox chemistry and molybdenum burial in a Mesoproterozoic Lake. Geophysical Research Letters, 46, 5871 - 5878. https://doi.org/10.1029/2019GL083316
dc.identifier.citedreferenceRico, K. I., Sheldon, N. D., & Kinsman- Costello, L. E. ( 2020 ). Associations between redox- sensitive trace metals and microbial communities in a Proterozoic ocean analogue. Geobiology, 18, 462 - 475. https://doi.org/10.1111/gbi.12388
dc.identifier.citedreferenceRiding, R. ( 2006 ). Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185, 229 - 238. https://doi.org/10.1016/j.sedgeo.2005.12.015
dc.identifier.citedreferenceRound, F. E., & Palmer, J. D. ( 1966 ). Persistent, vertical- migration rhythms in benthic microflora.: II. Field and laboratory studies on diatoms from the banks of the River Avon. Journal of the Marine Biological Association of the United Kingdom, 46, 191 - 214. https://doi.org/10.1017/S0025315400017641
dc.identifier.citedreferenceRuberg, S. A., Kendall, S. T., Biddanda, B. A., Black, T., Nold, S. C., Lusardi, W. R., Green, R., Casserley, T., Smith, E., Sanders, T. G., Lang, G. A., & Constant, S. A. ( 2008 ). Observations of the Middle Island Sinkhole in Lake Huron - A unique hydrogeologic and glacial creation of 400 million years. Marine Technology Society Journal, 42, 12 - 21. https://doi.org/10.4031/002533208787157633
dc.identifier.citedreferenceSchoonen, M. A. A., & Barnes, H. L. ( 1991 ). Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100°. Geochimica et Cosmochimica Acta, 55, 1495 - 1504.
dc.identifier.citedreferenceSchwedt, A., Kreutzmann, A. C., Polerecky, L., & Schulz- Vogt, H. N. ( 2012 ). Sulfur respiration in a marine chemolithoautotrophic beggiatoa strain. Frontiers in Microbiology, 2, 276. https://doi.org/10.3389/fmicb.2011.00276
dc.identifier.citedreferenceSeitaj, D., Schauer, R., Sulu- Gambari, F., Hidalgo- Martinez, S., Malkin, S. Y., Burdorf, L. D. W., Slomp, C. P., & Meysman, F. J. R. ( 2015 ). Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proceedings of the National Academy of Sciences United States of America, 112, 13278 - 13283. https://doi.org/10.1073/pnas.1510152112
dc.identifier.citedreferenceSharrar, A. M., Flood, B. E., Bailey, J. V., Jones, D. S., Biddanda, B. A., Ruberg, S. A., Marcus, D. N., & Dick, G. J. ( 2017 ). Novel large sulfur bacteria in the metagenomes of groundwater- fed chemosynthetic microbial mats in the Lake Huron Basin. Frontiers in Microbiology, 8, 791. https://doi.org/10.3389/fmicb.2017.00791
dc.identifier.citedreferenceSim, M. S., Bosak, T., & Ono, S. ( 2011 ). Large sulfur isotope fractionation does not require disproportionation. Science, 333 ( 6038 ), 74 - 77. https://doi.org/10.1126/science.1205103
dc.identifier.citedreferenceSnider, M. J., Biddanda, B. A., Lindback, M., Grim, S. L., & Dick, G. J. ( 2017 ). Versatile photophysiology of compositionally similar cyanobacterial mat communities inhabiting submerged sinkholes of Lake Huron. Aquatic Microbial Ecology, 79, 63 - 78. https://doi.org/10.3354/ame01813
dc.identifier.citedreferenceTaylor, B. E., Wheeler, M. C., & Nordstrom, D. K. ( 1984 ). Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation. Nature, 308, 538 - 541. https://doi.org/10.1038/308538a0
dc.identifier.citedreferenceThiel, J., Byrne, J. M., Kappler, A., Schink, B., & Pester, M. ( 2019 ). Pyrite formation from FeS and H2S is mediated through microbial redox activity. Proceedings of the National Academy of Sciences United States of America, 116, 6897 - 6902.
dc.identifier.citedreferenceVoorhies, A. A., Biddanda, B. A., Kendall, S. T., Jain, S., Marcus, D. N., Nold, S. C., Sheldon, N. D., & Dick, G. J. ( 2012 ). Cyanobacterial life at low O2: Community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat. Geobiology, 10, 250 - 267. https://doi.org/10.1111/j.1472- 4669.2012.00322.x
dc.identifier.citedreferenceVoorhies, A. A., Eisenlord, S. D., Marcus, D. N., Duhaime, M. B., Biddanda, B. A., Cavalcoli, J. D., & Dick, G. J. ( 2016 ). Ecological and genetic interactions between cyanobacteria and viruses in a low- oxygen mat community inferred through metagenomics and metatranscriptomics. Environmental Microbiology, 18 ( 2 ), 358 - 371. https://doi.org/10.1111/1462- 2920.12756
dc.identifier.citedreferenceWacey, D., McLoughlin, N., Whitehouse, M. J., & Kilburn, M. R. ( 2010 ). Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone. Geology, 38, 1115 - 1118.
dc.identifier.citedreferenceWalter, M. R. ( 1976 ). Hot- spring sediments in yellowstone national park. In M. R. Walter (Ed.), Stromatolites (pp. 489 - 498 ).: Elsevier.
dc.identifier.citedreferenceZerkle, A. L., Farquhar, J., Johnston, D. T., Cox, R. P., & Canfield, D. E. ( 2009 ). Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium. Geochimica et Cosmochimica Acta, 73 ( 2 ), 291 - 306. https://doi.org/10.1016/j.gca.2008.10.027
dc.identifier.citedreferenceZerkle, A. L., Jones, D. S., Farquhar, J., & Macalady, J. L. ( 2016 ). Sulfur isotope values in the sulfidic Frasassi cave system, central Italy: A case study of a chemolithotrophic S- based ecosystem. Geochimica et Cosmochimica Acta, 173, 373 - 386. https://doi.org/10.1016/j.gca.2015.10.028
dc.identifier.citedreferenceAller, R. C., Blair, N. E., Xia, Q., & Rude, P. D. ( 1996 ). Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments. Continental Shelf Research, 16, 753 - 786. https://doi.org/10.1016/0278- 4343(95)00046- 1
dc.identifier.citedreferenceBalci, N., Shanks, W. C., Mayer, B., & Mandernack, K. W. ( 2007 ). Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochimica et Cosmochimica Acta, 71, 3796 - 3811. https://doi.org/10.1016/j.gca.2007.04.017
dc.identifier.citedreferenceBao, H. ( 2006 ). Purifying barite for oxygen isotope measurement by dissolution and reprecipitation in a chelating solution. Analytical Chemistry, 78, 304 - 309. https://doi.org/10.1021/ac051568z
dc.identifier.citedreferenceBartley, J. K. ( 1996 ). Actualistic taphonomy of cyanobacteria: Implications for the Precambrian fossil record. Palaios, 11, 571 - 586. https://doi.org/10.2307/3515192.
dc.identifier.citedreferenceBiddanda, B. A., Coleman, D. F., Johengen, T. H., Ruberg, S. A., Meadows, G. A., Van Sumeren, H. W., Rediske, R. R., & Kendall, S. T. ( 2006 ). Exploration of a submerged sinkhole ecosystem in Lake Huron. Ecosystems, 9, 828 - 842. https://doi.org/10.1007/s10021- 005- 0057- y
dc.identifier.citedreferenceBiddanda, B. A., McMillan, A. C., Long, S. A., Snider, M. J., & Weinke, A. D. ( 2015 ). Seeking sunlight: rapid phototactic motility of filamentous mat- forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron- s submerged sinkholes. Frontiers in Microbiology, 6, 1 - 13. https://doi.org/10.3389/fmicb.2015.00930
dc.identifier.citedreferenceBiddanda, B. A., & Weinke, A. D. accepted. Extant mat world analog microbes synchronize migration to a diel tempo. Limnology and Oceanography, https://doi.org/10.1002/essoar.10502762.10502761
dc.identifier.citedreferenceBottcher, M. E., Thamdrup, B., & Vennemann, T. W. ( 2001 ). Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur. Geochimica et Cosmochimica Acta, 65, 1601 - 1609. https://doi.org/10.1016/S0016- 7037(00)00628- 1
dc.identifier.citedreferenceBradley, A. S., Leavitt, W. D., Schmidt, M., Knoll, A. H., Girguis, P. R., & Johnston, D. T. ( 2016 ). Patterns of sulfur isotope fractionation during microbial sulfate reduction. Geobiology, 14 ( 1 ), 91 - 101. https://doi.org/10.1111/gbi.12149
dc.identifier.citedreferenceBryant, R. N., Jones, C., Raven, M. R., Gomes, M. L., Berelson, W. M., Bradley, A. S., & Fike, D. A. ( 2019 ). Sulfur isotope analysis of microcrystalline iron sulfides using secondary ion mass spectrometry imaging: Extracting local paleo- environmental information from modern and ancient sediments. Rapid Communications in Mass Spectrometry, 33, 491 - 502. https://doi.org/10.1002/rcm.8375
dc.identifier.citedreferenceCahoon, L. ( 1999 ). The role of benthic microalgae in neritic ecosystems. Oceanography and Marine Biology, 37, 47 - 86.
dc.identifier.citedreferenceCanfield, D. E., & Des Marais, D. J. ( 1993 ). Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochimica et Cosmochimica Acta, 57, 3971 - 3984. https://doi.org/10.1016/0016- 7037(93)90347- Y
dc.identifier.citedreferenceCanfield, D. E., & Farquhar, J. ( 2009 ). Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proceedings of the National Academy of Science, 106, 8123 - 8127. https://doi.org/10.1073/pnas.0902037106
dc.identifier.citedreferenceCanfield, D. E., Farquhar, J., & Zerkle, A. L. ( 2010 ). High isotope fractionations during sulfate reduction in a low- sulfate euxinic ocean analog. Geology, 38, 415 - 418.
dc.identifier.citedreferenceCanfield, D. E., Raiswell, R. R., Westrich, J. T., Reaves, C. M., & Berner, R. A. ( 1986 ). The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54, 149 - 155. https://doi.org/10.1016/0009- 2541(86)90078- 1
dc.identifier.citedreferenceCartaxana, P., Brotas, V., & Serôdio, J. ( 2008 ). Effects of two motility inhibitors on the photosynthetic activity of the diatoms cylindrotheca closterium and pleurosigma angulatum. Diatom Research, 23, 65 - 74.
dc.identifier.citedreferenceChanton, J. P., & Martens, C. S. ( 1985 ). The effects of heat and stannous chloride addition on the active distillation of acid volatile sulfide from pyrite- rich marine sediment samples. Biogeochemistry, 1 ( 4 ), 375 - 382. https://doi.org/10.1007/BF02187379
dc.identifier.citedreferenceCui, H., Kitajima, K., Spicuzza, M. J., Fournelle, J. H., Denny, A., Ishida, A., Zhang, F., & Valley, J. W. ( 2018 ). Questioning the biogenicity of Neoproterozoic superheavy pyrite by SIMS. American Mineralogist, 103, 1362 - 1400. https://doi.org/10.2138/am- 2018- 6489
dc.identifier.citedreferencede Beer, D., Glud, A., Epping, E., & Kiihl, M. ( 1997 ). A fast- responding CO2 microelectrode for profiling sediments, microbial mats, and biofilms. Limnology and Oceanography, 42, 1590 - 1600.
dc.identifier.citedreferenceDes Marais, D. J. ( 2003 ). Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biology Bulletin, 204, 160 - 167. https://doi.org/10.2307/1543552.
dc.identifier.citedreferenceDick, G. J., Grim, S. L., & Klatt, J. M. ( 2018 ). Controls on O2 production in cyanobacterial mats and implications for earth- s oxygenation. Annual Review of Earth and Planetary Sciences, 46, 123 - 147.
dc.identifier.citedreferenceDonald, R., & Southam, G. ( 1999 ). Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite. Geochimica et Cosmochimica Acta, 63, 2019 - 2023. https://doi.org/10.1016/S0016- 7037(99)00140- 4
dc.identifier.citedreferenceDunker, R., Roy, H., Kamp, A., & Jorgensen, B. B. ( 2011 ). Motility patterns of filamentous sulfur bacteria, Beggiatoa spp. FEMS Microbiology Ecology, 77 ( 1 ), 176 - 185. https://doi.org/10.1111/j.1574- 6941.2011.01099.x
dc.identifier.citedreferenceFike, D. A., Bradley, A. S., & Rose, C. V. ( 2015 ). Rethinking the ancient sulfur cycle. Annual Review of Earth and Planetary Sciences, 43 ( 1 ), 593 - 622. https://doi.org/10.1146/annurev- earth- 060313- 054802
dc.identifier.citedreferenceFike, D. A., Finke, N., Zha, J., Blake, G., Hoehler, T. M., & Orphan, V. J. ( 2009 ). The effect of sulfate concentration on (sub)millimeter- scale sulfide δ34S in hypersaline cyanobacterial mats over the diurnal cycle. Geochimica et Cosmochimica Acta, 73, 6187 - 6204. https://doi.org/10.1016/j.gca.2009.07.006
dc.identifier.citedreferenceFike, D. A., Gammon, C. L., Ziebis, W., & Orphan, V. J. ( 2008 ). Micron- scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: A paired nanoSIMS and CARD- FISH approach. ISME Journal, 2 ( 7 ), 749 - 759. https://doi.org/10.1038/ismej.2008.39
dc.identifier.citedreferenceFike, D. A., Houghton, J. L., Moore, S. E., Gilhooly, W. P., Dawson, K. S., Druschel, G. K., Amend, J. P., & Orphan, V. J. ( 2017 ). Spatially resolved capture of hydrogen sulfide from the water column and sedimentary pore waters for abundance and stable isotopic analysis. Marine Chemistry, 197, 26 - 37. https://doi.org/10.1016/j.marchem.2017.10.004
dc.identifier.citedreferenceFischer, W. W., Fike, D. A., Johnson, J. E., Raub, T. D., Guan, Y., Kirschvink, J. L., & Eiler, J. M. ( 2014 ). SQUID- SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle. Proceedings of the National Academy of Science, 111, 5468 - 5473. https://doi.org/10.1073/pnas.1322577111
dc.identifier.citedreferenceFossing, H., & Jørgensen, B. B. ( 1989 ). Measurements of bacterial sulphate reduction in sediments: Evaluation of a single- step chromium reduction method. Biogeochemistry, 8, 205 - 222.
dc.identifier.citedreferenceGomes, M. L., Fike, D. A., Bergmann, K. D., Jones, C., & Knoll, A. H. ( 2018 ). Environmental insights from high- resolution (SIMS) sulfur isotope analyses of sulfides in Proterozoic microbialites with diverse mat textures. Geobiology, 16, 17 - 34. https://doi.org/10.1111/gbi.12265
dc.identifier.citedreferenceGomes, M. L., & Hurtgen, M. T. ( 2013 ). Sulfur isotope systematics of a euxinic, low- sulfate lake: Evaluating the importance of the reservoir effect in modern and ancient oceans. Geology, 41, 6, 663 - 666. https://doi.org/10.1130/G34187.1
dc.identifier.citedreferenceGomes, M. L., & Hurtgen, M. T. ( 2015 ). Sulfur isotope fractionation in modern euxinic systems: Implications for paleoenvironmental reconstructions of paired sulfate- sulfide isotope records. Geochimica et Cosmochimica Acta, 157, 39 - 55. https://doi.org/10.1016/j.gca.2015.02.031
dc.identifier.citedreferenceGomes, M. L., & Johnston, D. T. ( 2017 ). Oxygen and sulfur isotopes in sulfate in modern euxinic systems with implications for evaluating the extent of euxinia in ancient oceans. Geochimica et Cosmochimica Acta, 205, 331 - 359. https://doi.org/10.1016/j.gca.2017.02.020
dc.identifier.citedreferenceGomes, M., Reidman, L. A., O- Reilly, S. S., Lingappa, U., Metcalfe, K., Fike, D. A., Grotzinger, J. P., Fischer, W. W., & Knoll, A. H. ( 2020 ). Microbial Mats on little ambergris cay. Turks and caicos islands: taphonomy and the selective preservation of biosignatures. Frontiers in Earth Sciences, 8, 387.
dc.identifier.citedreferenceGrim, S. L. ( 2019 ). Genomic and Functional Investigations Into Seasonally- Impacted and Morphologically- Distinct Anoxygenic Photosynthetic Cyanobacterial Mats [PhD: University of Michigan.
dc.identifier.citedreferenceGrotzinger, J. P., & Knoll, A. H. ( 1999 ). Stromatolites in precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27, 313 - 358. https://doi.org/10.1146/annurev.earth.27.1.313
dc.identifier.citedreferenceGuarini, J.- M., Chauvaud, L., & Coston- Guarini, J. ( 2009 ). Can the intertidal benthic microalgal primary production account for the "Missing Carbon Sink"? Journal of Oceanography Research and Data, 1, 13 - 19.
dc.identifier.citedreferenceHabicht, K. S., & Canfield, D. E. ( 1997 ). Sulfur isotope fractionation during bacterial sulfate reduction in organic- rich sediments. Geochimica et Cosmochimica Acta, 61, 5351 - 5361. https://doi.org/10.1016/S0016- 7037(97)00311- 6
dc.identifier.citedreferenceHarrison, A. G., & Thode, H. G. ( 1958 ). Mechanism of the bacterial reduction of sulphate from isotope fractionation studies. Transactions of the Faraday Society, 54 ( 1 ), 84 - 92. https://doi.org/10.1039/tf9585400084
dc.identifier.citedreferenceHorodyski, R. J., Bauld, J., Lipps, J. H., & Mendelson, C. V. ( 1992 ). Preservation of prokaryotes and organic- walled and calcareous and siliceous protists. In J. W. Schopf, & C. Klein (Eds.), The proterozoic biosphere: A multidisciplinary study (pp. 185 - 193 ). Cambridge University Press.
dc.identifier.citedreferenceHoughton, J. L., Gilhooly, W. P., Kafantaris, F.- C.- A., Druschel, G. K., Lu, G.- S., Amend, J. P., Godelitsas, A., & Fike, D. A. ( 2019 ). Spatially and temporally variable sulfur cycling in shallow- sea hydrothermal vents, Milos, Greece. Marine Chemistry, 208, 83 - 94. https://doi.org/10.1016/j.marchem.2018.11.002
dc.identifier.citedreferenceHuerta- Diaz, M. A., Delgadillo- Hinojosa, F., Otero, X. L., Segovia- Zavala, J. A., Hernandez- Ayon, J. M., Galindo- Bect, M. S., & Amaro- Franco, E. ( 2011 ). Iron and trace metals in microbial mats and underlying sediments: Results from Guerrero Negro Saltern, Baja California Sur, Mexico. Aquatic Geochemistry, 17, 603 - 628. https://doi.org/10.1007/s10498- 011- 9126- 3.
dc.identifier.citedreferenceJeroschewski, P., Steuckart, C., & Kuhl, M. ( 1996 ). An amperometric microsensor for the determination of H2S in aquatic environments. Analytical Chemistry, 68, 4351 - 4357.
dc.identifier.citedreferenceJørgensen, B. B. ( 1978 ). A comparison of methods for the quantification of bacterial sulphate reduction in coastal marine sediments: I. Measurements with radiotracer techniques. Geomicrobiology Journal, 1, 11 - 27.
dc.identifier.citedreferenceJorgensen, B. B. ( 1979 ). A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochimica et Cosmochimica Acta, 43, 363 - 374. https://doi.org/10.1016/0016- 7037(79)90201- 1
dc.identifier.citedreferenceKallmeyer, J., Ferdelman, T. G., Weber, A., Fossing, H., & Jørgensen, B. B. ( 2004 ). A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnology and Oceanography: Methods, 2, 171 - 180. https://doi.org/10.4319/lom.2004.2.171 Kamp, A., de Beer, D., Nitsch, J. L., Lavik, G., and Stief, P., 2011, Diatoms respire nitrate to survive dark and anoxic conditions: Proceedings of the National Academy of Sciences, 108, 5649- 5654.
dc.identifier.citedreferenceKallmeyer, J., Ferdelman, T. G., Weber, A., Fossing, H., & Jørgensen, B. B. ( 2004 ). A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnology and Oceanography: Methods, 2, 171 - 180. https://doi.org/10.4319/lom.2004.2.171 Kamp, A., de Beer, D., Nitsch, J. L., Lavik, G., and Stief, P., 2011, Diatoms respire nitrate to survive dark and anoxic conditions: Proceedings of the National Academy of Sciences, 108, 5649- 5654.
dc.identifier.citedreferenceKamp, A., de Beer, D., Nitsch, J. L., Lavik, G., & Stief, P. ( 2011 ). Diatoms respire nitrate to survive dark and anoxic conditions. Proceedings of the National Academy of Sciences, 108, 5649 - 5654. https://doi.org/10.1073/pnas.1015744108
dc.identifier.citedreferenceKaplan, I. R., & Rittenberg, S. C. ( 1964 ). Microbiological fractionation of sulphur isotopes. Journal of General Microbiology, 34, 195 - 212. https://doi.org/10.1099/00221287- 34- 2- 195
dc.identifier.citedreferenceKinsman- Costello, L. E., Sheik, C. S., Sheldon, N. D., Allen Burton, G., Costello, D. M., Marcus, D., Uyl, P. A., & Dick, G. J. ( 2017 ). Groundwater shapes sediment biogeochemistry and microbial diversity in a submerged Great Lake sinkhole. Geobiology, 15 ( 2 ), 225 - 239. https://doi.org/10.1111/gbi.12215
dc.identifier.citedreferenceKjeldsen, K. U., Schreiber, L., Thorup, C. A., Boesen, T., Bjerg, J. T., Yang, T., Dueholm, M. S., Larsen, S., Risgaard- Petersen, N., Nierychlo, M., Schmid, M., Bøggild, A., Vossenberg, J. D., Geelhoed, J. S., Meysman, F. J. R., Wagner, M., Nielsen, P. H., Nielsen, L. P., & Schramm, A. ( 2019 ). On the evolution and physiology of cable bacteria. Proceedings of the National Academy of Sciences United States of America, 116, 19116 - 19125. https://doi.org/10.1073/pnas.1903514116
dc.identifier.citedreferenceKlatt, J. M., Marchant, H., de Beer, D., Ziebis, W., Druschel, G., Medina, M., Chennu, A., & Dick, G. ( 2017 ). Response of Chemotrophic Processes to Dynamic Redox Conditions in a Cyanobacterial Mat: 27th Goldschmidt Conference, Paris, France, August 2017.
dc.identifier.citedreferenceKlatt, J. M., & Polerecky, L. ( 2015 ). Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation. Frontiers in Microbiology, 6, 484. https://doi.org/10.3389/fmicb.2015.00484
dc.identifier.citedreferenceKrekeler, D., Teske, A., & Cypionka, H. ( 1998 ). Strategies of sulfate- reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiology Ecology, 25, 89 - 96. https://doi.org/10.1111/j.1574- 6941.1998.tb00462.x
dc.identifier.citedreferenceLeavitt, W. D., Halevy, I., Bradley, A. S., & Johnston, D. T. ( 2013 ). Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proceedings of the National Academy of Sciences United States of America, 110 ( 28 ), 11244 - 11249. https://doi.org/10.1073/pnas.1218874110
dc.identifier.citedreferenceLee, C., Love, G. D., Jahnke, L. L., Kubo, M. D., & Des Marais, D. J. ( 2019 ). Early diagenetic sequestration of microbial mat lipid biomarkers through covalent binding into insoluble macromolecular organic matter (IMOM) as revealed by sequential chemolysis and catalytic hydropyrolysis. Organic Geochemistry, 132, 11 - 22. https://doi.org/10.1016/j.orggeochem.2019.04.002
dc.identifier.citedreferenceLenton, T. M., & Daines, S. J. ( 2017 ). Matworld - the biogeochemical effects of early life on land. New Phytologist, 215, 531 - 537. https://doi.org/10.1111/nph.14338
dc.identifier.citedreferenceLongphuirt, S., Lim, J.- H., Leynaert, A., Claquin, P., Choy, E.- J., Kang, C.- K., & An, S. ( 2009 ). Dissolved inorganic nitrogen uptake by intertidal microphytobenthos: Nutrient concentrations, light availability and migration. Marine Ecology Progress Series, 379, 33 - 34. https://doi.org/10.3354/meps07852
dc.identifier.citedreferenceLuther, G. W. ( 2005 ). Acid volatile sulfide - A comment. Marine Chemistry, 97, 198 - 205. https://doi.org/10.1016/j.marchem.2005.08.001
dc.identifier.citedreferenceLyons, T. W. ( 1997 ). Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the Black Sea. Geochimica et Cosmochimica Acta, 61, 3367 - 3382.
dc.identifier.citedreferenceLyons, T. W., Anbar, A. D., Severmann, S., Scott, C., & Gill, B. C. ( 2009 ). Tracking Euxinia in the ancient ocean: A multiproxy perspective and proterozoic case study. Annual Review of Earth and Planetary Sciences, 37, 507 - 534. https://doi.org/10.1146/annurev.earth.36.031207.124233
dc.identifier.citedreferenceMacintyre, H., Geider, R., & Miller, D. ( 1996 ). Microphytobenthos: The ecological role of the "Secret Garden" of unvegetated, shallow- water marine habitats. I. Distribution, abundance and primary production. Estuaries and Coasts, 19, 186 - 201. https://doi.org/10.2307/1352224
dc.identifier.citedreferenceMalkin, S. Y., Rao, A. M., Seitaj, D., Vasquez- Cardenas, D., Zetsche, E.- M., Hidalgo- Martinez, S., Boschker, H. T., & Meysman, F. J. ( 2014 ). Natural occurrence of microbial sulphur oxidation by long- range electron transport in the seafloor. ISME Journal, 8, 1843 - 1854. https://doi.org/10.1038/ismej.2014.41
dc.identifier.citedreferenceMandernack, K. W., Krouse, H. R., & Skei, J. M. ( 2003 ). A stable sulfur and oxygen isotopic investigation of sulfur cycling in an anoxic marine basin, Framvaren Fjord, Norway. Chemical Geology, 195, 181 - 200. https://doi.org/10.1016/S0009- 2541(02)00394- 7
dc.identifier.citedreferenceMariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Leto Ile, R., Tardieux, A., & Tardieux, P. ( 1981 ). Some principles; illustration for the denitrification and nitrification processes. Plant and Soil, 62, 413 - 430. https://doi.org/10.1007/BF02374138
dc.identifier.citedreferenceMerz, E., Dick, G. J., de Beer, D., Grim, S., Hübener, T., Littmann, S., Olsen, K., Stuart, D., Lavik, G., Marchant, H. K., & Klatt, J. M. ( 2020 ). Nitrate respiration and diel migration patterns of diatoms are linked in sediments underneath a microbial mat. Environmental Microbiology, 23 ( 3 ), 1422 - 1435. https://doi.org/10.1111/1462- 2920.15345.
dc.identifier.citedreferenceMeyer, N. R., Zerkle, A. L., & Fike, D. A. ( 2017 ). Sulphur cycling in a Neoarchaean microbial mat. Geobiology, 15 ( 3 ), 353 - 365. https://doi.org/10.1111/gbi.12227
dc.identifier.citedreferenceNakai, N., & Jensen, M. L. ( 1964 ). The kinetic isotope effect in the bacterial reduction and oxidation of sulfur. Geochimica et Cosmochimica Acta, 28, 1893 - 1912. https://doi.org/10.1016/0016- 7037(64)90136- X
dc.identifier.citedreferenceNielsen, L. P., Risgaard- Petersen, N., Fossing, H., Christensen, P. B., & Sayama, M. ( 2010 ). Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature, 463 ( 7284 ), 1071 - 1074. https://doi.org/10.1038/nature08790
dc.identifier.citedreferenceNold, S. C., Bellecourt, M. J., Kendall, S. T., Ruberg, S. A., Sanders, T. G., Klump, J. V., & Biddanda, B. A. ( 2013 ). Underwater sinkhole sediments sequester Lake Huron- s carbon. Biogeochemistry, 115, 235 - 250. https://doi.org/10.1007/s10533- 013- 9830- 8
dc.identifier.citedreferenceNold, S. C., Pangborn, J. B., Zajack, H. A., Kendall, S. T., Rediske, R. R., & Biddanda, B. A. ( 2010 ). Benthic bacterial diversity in submerged sinkhole ecosystems. Applied and Environmental Microbiology, 76, 347 - 351. https://doi.org/10.1128/AEM.01186- 09
dc.identifier.citedreferenceNold, S. C., Zajack, H. A., & Biddanda, B. A. ( 2010 ). Eukaryal and archaeal diversity in a submerged sinkhole ecosystem influenced by sulfur- rich, hypoxic groundwater. Journal of Great Lakes Research, 36, 366 - 375. https://doi.org/10.1016/j.jglr.2010.02.014
dc.identifier.citedreferencePasquier, V., Sansjofre, P., Rabineau, M., Revillon, S., Houghton, J., & Fike, D. A. ( 2017 ). Pyrite sulfur isotopes reveal glacial- interglacial environmental changes. Proceedings of the National Academy of Sciences United States of America, 114 ( 23 ), 5941 - 5945. https://doi.org/10.1073/pnas.1618245114
dc.identifier.citedreferencePellerin, A., Antler, G., Holm, S. A., Findlay, A. J., Crockford, P. W., Turchyn, A. V., Jørgensen, B. B., & Finster, K. ( 2019 ). Large sulfur isotope fractionation by bacterial sulfide oxidation: Science. Advances, 5, eaaw1480. https://doi.org/10.1126/sciadv.aaw1480
dc.identifier.citedreferencePeters, S. E., Husson, J. M., & Wilcots, J. ( 2017 ). The rise and fall of stromatolites in shallow marine environments. Geology, 45 ( 6 ), 487 - 490. https://doi.org/10.1130/G38931.1
dc.identifier.citedreferencePfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El- Naggar, M. Y., Leung, K. M., Schramm, A., Risgaard- Petersen, N., & Nielsen, L. P. ( 2012 ). Filamentous bacteria transport electrons over centimetre distances. Nature, 491, 218 - 221. https://doi.org/10.1038/nature11586
dc.identifier.citedreferencePicard, A., Gartman, A., Clarke, D. R., & Girguis, P. R. ( 2018 ). Sulfate- reducing bacteria influence the nucleation and growth of mackinawite and greigite. Geochimica et Cosmochimica Acta, 220, 367 - 384. https://doi.org/10.1016/j.gca.2017.10.006
dc.identifier.citedreferencePinckney, J., & Zingmark, R. G. ( 1991 ). Effects of tidal stage and sun angles on intertidal benthic microalgal productivity. Marine Ecology Progress Series, 76, 81 - 89. https://doi.org/10.3354/meps076081
dc.identifier.citedreferencePresent, T. M., Trower, L., Stein, N., Alleon, J., Bahniuk, A., Gomes, M. L., Lingappa, U., Metcalfe, K., Orzechowski, E. A., Riedman, L. A., Sanders, C. B., Morris, D. K., O- Reilly, S., Sibert, E. C., Thorpe, M., Tarika, M., Fischer, W. W., Knoll, A. H., & Grotzinger, J. P. ( 2018 ). Sedimentology and Geochemistry of Ooid Sands Buried Beneath Microbial Mats, Little Ambergris Cay, Turks and Caicos Islands. American Association of Petroleum Geologists Annual Convention & Exhibition.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.